HW #2 (129A), due Sep 27, 4pm

1. Dirac introduced a relativistic wave equation for spin 1/2 particle,

\[i\hbar \frac{\partial}{\partial t} \psi = H\psi = \left[c\vec{\alpha} \cdot \vec{p} + mc^2\beta \right] \psi. \]

(1)

The matrices \(\alpha \) and \(\beta \) are given in the lecture notes. Answer the following questions.

(1) Show that the momentum \(\vec{p} \) commutes with the Hamiltonian and hence is conserved.

(2) Show that the orbital angular momentum \(\vec{L} = \vec{x} \times \vec{p} \) does not commute with the Hamiltonian, and hence is not conserved, while the total angular momentum \(\vec{J} = \vec{L} + \frac{\hbar}{2} \vec{\Sigma} \) is.

(3) To label a state, you specify eigenvalues of operators that commute with each other. Show that \(\vec{J} \) does not commute with the momentum and cannot be used to label a state together with the momentum.

(4) On the other hand, the angular momentum along the direction of the momentum can be used. Verify this by calculating the commutator or \(\vec{p} \cdot \vec{J} \) with \(\vec{p} \), and by showing the eigenvalues \(\vec{p} \cdot \vec{J} = \pm \frac{\hbar}{2} |\vec{p}| \).

Note The combination \(h \equiv \frac{\vec{p} \cdot \vec{J}}{|\vec{p}|} \) is called helicity, and its eigenvalue \(\pm \frac{\hbar}{2} \) shows if the spin is parallel or anti-parallel to its motion. You specify a state of a free relativistic particle by its three-momentum \(\vec{p} \) and its helicity \(h \). When \(h = \frac{\hbar}{2} \), the particle is said to be right-handed, while when \(h = -\frac{\hbar}{2} \) left-handed.

2. When the electron moves in a constant magnetic field, show that its spin and its momentum rotate by \(2\pi \) with the same frequency (spin precession and Larmor frequencies), if \(g = 2 \) exactly. It means that the right-handed electron stays right-handed in cyclotron motion. This is the basis with which we measure the deviation of \(g \) from 2.

3. Solve Problem 1.1 from Cahn–Goldhaber.