Solutions to the Dirac equation

Dirac equation is given by

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \psi=c(\alpha \cdot \overrightarrow{\mathbf{p}}+m c \beta) \psi \tag{1}
\end{equation*}
$$

where $\overrightarrow{\mathbf{p}}=-i \hbar \vec{\nabla}$ (to be distinguished with c-number \vec{p}. Below, we set $\hbar=c=1$.
First, for a momentum

$$
\vec{p}=p(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
$$

we define two-component eigen-states of the matrix $\vec{\sigma} \cdot \vec{p}$ for later convenience:

$$
\begin{align*}
& \chi_{+}(\vec{p})=\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2} e^{i \phi}}, \tag{2}\\
& \chi_{-}(\vec{p})=\binom{-\sin \frac{\theta}{2} e^{-i \phi}}{\cos \frac{\theta}{2}}, \tag{3}
\end{align*}
$$

which satisfy

$$
\begin{equation*}
(\vec{\sigma} \cdot \vec{p}) \chi_{ \pm}(\vec{p})= \pm p \chi_{ \pm}(\vec{p}) . \tag{4}
\end{equation*}
$$

Using $\chi_{ \pm}$, we can write down solutions to the Dirac equation in a simple manner.
Positive energy solutions with momentum \vec{p} have space and time dependence $\psi_{ \pm}(x, t)=u_{ \pm}(p) e^{-i E t+i \vec{p} \cdot \vec{x}}$. The subscript \pm refers to the helicities $\pm 1 / 2$. The Dirac equation then reduces to an equation with no derivatives:

$$
\begin{equation*}
E \psi=(\alpha \cdot \vec{p}+m \beta) \psi \tag{5}
\end{equation*}
$$

where \vec{p} is the momentum vector (not an operator). Explicit solutions can be obtained easily as

$$
\begin{align*}
& u_{+}(p)=\frac{1}{\sqrt{E+m}}\binom{(E+m) \chi_{+}(\vec{p})}{p \chi_{+}(\vec{p})}, \tag{6}\\
& u_{-}(p)=\frac{1}{\sqrt{E+m}}\binom{(E+m) \chi_{-}(\vec{p})}{-p \chi_{-}(\vec{p})} . \tag{7}
\end{align*}
$$

Here and below, we adopt normalization $u_{ \pm}^{\dagger}(p) u_{ \pm}(p)=2 E$ and $E=\sqrt{\vec{p}^{2}+m^{2}}$.
Negative energy solutions must be filled in the vacuum and their "holes" are regarded as anti-particle states. Therefore, it is convenient to assign momentum $-\vec{p}$ and energy $-E=-\sqrt{\vec{p}^{2}+m^{2}}$. The solutions have space and time dependence
$\psi_{ \pm}(x, t)=v_{ \pm}(p) e^{+i E t-i \vec{p} \cdot \vec{x}}$. The Dirac equation again reduces to an equation with no derivatives:

$$
\begin{equation*}
-E \psi=(-\alpha \cdot \vec{p}+m \beta) \psi \tag{8}
\end{equation*}
$$

Explicit solutions are given by

$$
\begin{align*}
& v_{+}(p)=\frac{1}{\sqrt{E+m}}\binom{-p \chi_{-}(\vec{p})}{(E+m) \chi_{-}(\vec{p})} \tag{9}\\
& v_{-}(p)=\frac{1}{\sqrt{E+m}}\binom{p \chi_{+}(\vec{p})}{(E+m) \chi_{+}(\vec{p})} \tag{10}
\end{align*}
$$

It is convinient to define "barred" spinors $\bar{u}=u^{\dagger} \gamma^{0}=u^{\dagger}$ and $\bar{v}=v^{\dagger} \gamma^{0}$. The γ matrices are defined by

$$
\gamma^{0}=\beta=\left(\begin{array}{cc}
1 & 0 \tag{11}\\
0 & -1
\end{array}\right), \quad \gamma^{i}=\beta \alpha^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)
$$

The combination $\bar{u} u$ is a Lorentz-invariant, $\bar{u} u=2 m$, and similarly, $\bar{v} v=-2 m$. The combination $\bar{u} \gamma^{\mu} u$ transforms as a Lorentz vector:

$$
\begin{equation*}
\bar{u}_{\kappa}(p) \gamma^{\mu} u_{\lambda}(p)=2 p^{\mu} \delta_{\kappa, \lambda} \tag{12}
\end{equation*}
$$

where $\kappa, \lambda= \pm$, and similarly,

$$
\begin{equation*}
\bar{v}_{\kappa}(p) \gamma^{\mu} v_{\lambda}(p)=2 p^{\mu} \delta_{\kappa, \lambda} . \tag{13}
\end{equation*}
$$

They can be interpreted as the "four-current density" which generates electromagnetic field: $\bar{u} \gamma^{0} u=u^{\dagger} u$ is the "charge density," and $\bar{u} \gamma^{i} u=u^{\dagger} \alpha^{i} u$ is the "current density."

Note that the matrix

$$
\gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{ll}
0 & 1 \tag{14}\\
1 & 0
\end{array}\right)
$$

commutes with the Hamiltonian in the massless limit $m \rightarrow 0$. In fact, at high energies $E \gg m$, the solutions are almost eigenstates of γ_{5}, with eigenvalues +1 for u_{+}and v_{-}, and -1 for u_{-}and v_{+}. The eigenvalue of γ_{5} is called "chirality." Therefore chirality is a good quantum number in the high energy limit. Neutrinos have chirality minus, and they do not have states with positive chirality.

