Solutions to the Dirac equation

Dirac equation is given by

$$i\hbar \frac{\partial}{\partial t}\psi = c(\alpha \cdot \vec{\mathbf{p}} + mc\beta)\psi,$$
 (1)

where $\vec{\mathbf{p}} = -i\hbar \vec{\nabla}$ (to be distinguished with c-number \vec{p}). Below, we set $\hbar = c = 1$. First, for a momentum

$$\vec{p} = p(\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta),$$

we define two-component eigen-states of the matrix $\vec{\sigma} \cdot \vec{p}$ for later convenience:

$$\chi_{+}(\vec{p}) = \begin{pmatrix} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2} e^{i\phi} \end{pmatrix},$$
(2)

$$\chi_{-}(\vec{p}) = \begin{pmatrix} -\sin\frac{\theta}{2}e^{-i\phi} \\ \cos\frac{\theta}{2} \end{pmatrix}, \tag{3}$$

which satisfy

$$(\vec{\sigma} \cdot \vec{p})\chi_{\pm}(\vec{p}) = \pm p\chi_{\pm}(\vec{p}). \tag{4}$$

Using χ_{\pm} , we can write down solutions to the Dirac equation in a simple manner. Positive energy solutions with momentum \vec{p} have space and time dependence $\psi_{\pm}(x,t) = u_{\pm}(p)e^{-iEt+i\vec{p}\cdot\vec{x}}$. The subscript \pm refers to the helicities $\pm 1/2$. The Dirac equation then reduces to an equation with no derivatives:

$$E\psi = (\alpha \cdot \vec{p} + m\beta)\psi, \tag{5}$$

where \vec{p} is the momentum vector (not an operator). Explicit solutions can be obtained easily as

$$u_{+}(p) = \frac{1}{\sqrt{E+m}} \begin{pmatrix} (E+m)\chi_{+}(\vec{p}) \\ p\chi_{+}(\vec{p}) \end{pmatrix}, \tag{6}$$

$$u_{-}(p) = \frac{1}{\sqrt{E+m}} \begin{pmatrix} (E+m)\chi_{-}(\vec{p}) \\ -p\chi_{-}(\vec{p}) \end{pmatrix}. \tag{7}$$

Here and below, we adopt normalization $u_{\pm}^{\dagger}(p)u_{\pm}(p)=2E$ and $E=\sqrt{\vec{p}^2+m^2}$.

Negative energy solutions must be filled in the vacuum and their "holes" are regarded as anti-particle states. Therefore, it is convenient to assign momentum $-\vec{p}$ and energy $-E = -\sqrt{\vec{p}^2 + m^2}$. The solutions have space and time dependence

 $\psi_{\pm}(x,t) = v_{\pm}(p)e^{+iEt-i\vec{p}\cdot\vec{x}}$. The Dirac equation again reduces to an equation with no derivatives:

$$-E\psi = (-\alpha \cdot \vec{p} + m\beta)\psi. \tag{8}$$

Explicit solutions are given by

$$v_{+}(p) = \frac{1}{\sqrt{E+m}} \begin{pmatrix} -p\chi_{-}(\vec{p}) \\ (E+m)\chi_{-}(\vec{p}) \end{pmatrix}, \tag{9}$$

$$v_{-}(p) = \frac{1}{\sqrt{E+m}} \begin{pmatrix} p\chi_{+}(\vec{p}) \\ (E+m)\chi_{+}(\vec{p}) \end{pmatrix}. \tag{10}$$

It is convinient to define "barred" spinors $\bar{u} = u^{\dagger} \gamma^0 = u^{\dagger}$ and $\bar{v} = v^{\dagger} \gamma^0$. The γ matrices are defined by

$$\gamma^0 = \beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \gamma^i = \beta \alpha^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}.$$
(11)

The combination $\bar{u}u$ is a Lorentz-invariant, $\bar{u}u=2m$, and similarly, $\bar{v}v=-2m$. The combination $\bar{u}\gamma^{\mu}u$ transforms as a Lorentz vector:

$$\bar{u}_{\kappa}(p)\gamma^{\mu}u_{\lambda}(p) = 2p^{\mu}\delta_{\kappa,\lambda},\tag{12}$$

where $\kappa, \lambda = \pm$, and similarly,

$$\bar{v}_{\kappa}(p)\gamma^{\mu}v_{\lambda}(p) = 2p^{\mu}\delta_{\kappa,\lambda}.$$
(13)

They can be interpreted as the "four-current density" which generates electromagnetic field: $\bar{u}\gamma^0 u = u^{\dagger}u$ is the "charge density," and $\bar{u}\gamma^i u = u^{\dagger}\alpha^i u$ is the "current density."

Note that the matrix

$$\gamma_5 = i\gamma^0 \gamma^1 \gamma^2 \gamma^3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{14}$$

commutes with the Hamiltonian in the massless limit $m \to 0$. In fact, at high energies $E \gg m$, the solutions are almost eigenstates of γ_5 , with eigenvalues +1 for u_+ and v_- , and -1 for u_- and v_+ . The eigenvalue of γ_5 is called "chirality." Therefore chirality is a good quantum number in the high energy limit. Neutrinos have chirality minus, and they do not have states with positive chirality.