Solutions to the Dirac equation

Dirac equation is given by
L0 .
zhgw =c(a-p+ meh), (1)

where p = —ihV (to be distinguished with c-number 7). Below, we set i = ¢ = 1.
First, for a momentum

P = p(sin 0 cos ¢, sin @ sin ¢, cos ),

we define two-component eigen-states of the matrix ¢ - p for later convenience:
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which satisfy
(@ P)x=(P) = £px=(D). (4)

Using x+, we can write down solutions to the Dirac equation in a simple manner.

Positive energy solutions with momentum p have space and time dependence
VYi(z,t) = us(p)e FHPZ The subscript & refers to the helicities +1/2. The
Dirac equation then reduces to an equation with no derivatives:

Ep = (o- 4+ mpB), (5)

where p is the momentum vector (not an operator). Explicit solutions can be
obtained easily as
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Here and below, we adopt normalization ul (p)us(p) = 2FE and E = /p? + m2.
Negative energy solutions must be filled in the vacuum and their “holes” are

regarded as anti-particle states. Therefore, it is convenient to assign momentum

—p and energy —E = —+/p? + m?. The solutions have space and time dependence



Yi(z,t) = va(p)et =7 The Dirac equation again reduces to an equation with
no derivatives:

—E¢ = (—a-p+mp)p. (8)

Explicit solutions are given by
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It is convinient to define “barred” spinors @ = u'7® = u' and v = v14°. The v
matrices are defined by

7°=ﬂ=<(1) _01>, viZB&i=<_(;i %) (11)

The combination wu is a Lorentz-invariant, tu = 2m, and similarly, vv = —2m.
The combination uy*u transforms as a Lorentz vector:

Us(p)Y ur(p) = 2p" 85 1, (12)

where x, A = £, and similarly,

Ue(P)Y"Ua(p) = 29" 0 - (13)

They can be interpreted as the “four-current density” which generates electromag-
netic field: @y%u = u'u is the “charge density,” and @y'u = u'a’u is the “current
density.”

Note that the matrix

. 0 1
¥ = i7"y = ( 10 ) (14)

commutes with the Hamiltonian in the massless limit m — 0. In fact, at high
energies E > m, the solutions are almost eigenstates of v5, with eigenvalues +1
for uy and v_, and —1 for u_ and vy. The eigenvalue of 75 is called “chirality.”
Therefore chirality is a good quantum number in the high energy limit. Neutrinos
have chirality minus, and they do not have states with positive chirality.



