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50-year old puzzle

• Goldstone’s theorem	


• for every spontaneously broken 
symmetry, there is a massless excitation	


• E = c p (linear dispersion relation)	


• in Heisenberg ferromagnet	


• 1 gapless excitation for 2 broken symm	


• E∝p2 (quadratic dispersion relation)	


• What is going on?



Outline

• Introduction (lengthy)	


• Main points = simple points	


• Formalism –Internal Symmetries–	


• Previously known results	


• Redundancies (brief)	


• Massive NGBs (brief)	


• Conclusion



Introduction



SSB is Ubiquitous

• 𝜒-symmetry in strong interactions (QCD)	

• crystals (spatial translations)	

• 4He superfluid, BEC (particle number)	

• 3He superfluid, spinor BEC, neutron stars, 

kaon condensation, color superconductivity, 
etc (a rich variety of symmetries)	


• superconductors, Higgs (gauge invariance)	

• what is the underlying unified description?



Goldstone’s theorem

• When a continuous symmetry G is 
spontaneously broken to its subgroup H, 
there are massless bosons E=c p for every 
broken generators.	


• nNGB=nBG	


• assumes Lorentz invariance and positive 
definite metric of the Hilbert space

h⇡a(p)|jbµ(0)|0i = f⇡�
abpµ



crystal

longitudinal

transverse

⟹phonon, E=csT p

G=R2	

H=Z2	


G/H=T2

⟹phonon, E=csL p



Particle numbers

• U(1) symmetry	


• Ginzburg-Landau theory	


• G=U(1), H=0	


• 4He superfluid	


• scalar BEC

V = �µ ⇤ + �( ⇤ )2

Figure 4: Taken from D.G. Henshaw and A.D.B. Woods, Phys. Rev., 121,
1266 (1961).
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Figure 3: The measured excitation spectrum !(k) of a trapped Bose-Einstein
condensate. The solid line is the Bogoliubov spectrum with no free parame-
ters, in the local density approximation (LDA) for µ = 1.91 kHz. The dashed
line is the parabolic free-particle spectrum. For most points, the error bars
are not visible on the scale of the figure. The inset shows the linear phonon
regime. Taken from J. Steinhauser et al ., Phys. Rev. Lett., 88, 120407
(2002).

After quantization, this becomes a quasi-particle (elementary excitation of a
collective system) called phonon with the energy E = c

s

|~p|.
On the other hand, at large momentum, the dispersion relation Eq. (51)

can be approxiimated as

E(~p) ' ~p2

2m
+ µ + O(~p2)�1 (53)

and hence it is the same as the single particle excitation except the o↵set
µ = c2

s

m. This is called the excitation in the free-particle regime.
In the case of liquid 4He, the interaction is quite strong and the linearized

analysis fails. The dispersion relation rises linearly in the phonon-regime but
it turns around the develops a minimum called “roton” (see Fig. 4). As
far as I know, there is no first-principle calculation of this spectrum. The
interaction is too strong for the perturbation theory to be valid to make
reliable quantitative predictions.

The linear dispersion in the phonon regime is important because it is the
very reason for superfluidity. Suppose the condensate is flowing with velocity
~v past a macroscopic obstruction of mass M . It is more convenient to go to
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 (x) ! e

i✓
 (x)

N =

Z
dx 

⇤
 

h0| |0i 6= 0



Heisenberg models
H = +J

X

hi,ji

~si · ~sj

H = �J
X

hi,ji

~si · ~sj

2 NGBs

1 NGB

E / p

E / p2

Both G/H = SO(3)/SO(2) = S2



two NGBs?

No!

the only mode



experiment

• Dispersion relations can 
be tested experimentally	


• specific heat	


• E∝p ⇒ CV∝T3	


• E∝p2 ⇒ CV∝T3/2	


• Plot CV/T3/2 vs T3/2

388 J. G. C. M I LN E

and electron-phonon induced attraction. If we use the
expression given by Pines" to calculate the interaction
energy, we obtain a value of 0.51 for that part of N(0) V
due to the electron-phonon interaction. Hence X(0)V
decreases by about 5)&10 4. Taking T,=4.5'K, X(0)V
=0.25 and the decrease in T. is about 0.039'K. This is
'o D. Pines, Phys. Rev. 109, 280 (1958).

a tittle more than half the experimental value, so that
the agreement is satisfactory considering the diS.culty
in estimating 1 and the simple nature of the calculation.
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Syecific Heat of Yttrium Iron Garnet from 1.5' to 4.2'K*
SAMcEL S. SHINOZAKIt

Departntent of Physics, University of Califorrtt'a, Berkeley, Calsfornea
(Received December 19, 1960)

The specific heats of two samples of yttrium iron garnet have been measured between 1.5 and 4.2'K.
The data have been analyzed into lattice- and spin-wave contributions characterized, respectively, by the
Debye temperatures 01=538'K, O~&=567'K, and by DI=0.81&(10 ' erg-cm~, D&=0.85)&10~ erg-cm
where D is defined by the dispersion relation for spin waves, Ace =Dk'.

I. INTRODUCTION
HE low-temperature specific heat of yttrium ironJ. garnet (YIG) is of interest in connection with

the expected spin-wave contribution to the thermal
properties. Recently, several specific-heat measure-
ments have been reported, but the results are not in
agreement with one another. In order to check the
former results, measurements on two samples of YIG
were carried out in the temperature range 1.5' to
4.2'K.

II. EXPERIMENTAL

against the vapor pressure of the helium bath at 22
points between 1.5' and 4.2'K. During the calibra-
tion, power was supplied to the bottom of the bath at
a rate of 0.04 watt and a correction for the hydrostatic

200
OJ
IA

~ 100

In order to avoid errors associated with the desorption
of exchange gas during the heating periods, a mechanical
heat switch was used to cool the samples to 1.1'K. The
switch consisted of two copper jaws connected to the
helium bath by Qexible copper wires. The jaws could be
closed on a small copper sample hoMer which made
thermal contact to the sample. The motion of the jaws
was controlled by applying tension to a piano wire
which went directly to the top of the apparatus and out
into the atmosphere through a bellows. Half an hour
was required to cool the sample from 77' to 4.2'K.
When the switch was opened, a temperature increase
in the sample was observed which corresponded to a
heat input of between 10 ergs and 100 ergs. The sample
was mounted rigidly in the cryostat with cotton thread.
The thermometer was an American Ohmite resistor

(-', watt, 47 ohms), which was found to be more sensitive
than the Allen-Bradley resistor. It was calibrated
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* Supported in part by the National Science Foundation.
t Present address: Ford Scientific Laboratory, Dearborn,

Michigan.

FIG. 1. The specific heat of the two YIG samples. The points
for sample 1 give the results obtained in one experiment. The
points for sample 2 give the results obtained in two separate
experiments.



spinor BEC

• BEC of F=1 atoms (ferromagnetic)	


• SO(3)xU(1) 	


• G/H=RP3	


• 3 broken generators	


• 1 NGB with E∝p	


• 1 NGB with E∝p2
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Spontaneous Symmetry Breaking with Abnormal Number
of Nambu-Goldstone Bosons and Kaon Condensate

V. A. Miransky*
Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7

I. A. Shovkovy*
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455

(Received 23 August 2001; published 28 February 2002)

We describe a class of relativistic models incorporating a finite density of matter in which spontaneous
breakdown of continuous symmetries leads to a lesser number of Nambu-Goldstone bosons than that
required by the Goldstone theorem. This class, in particular, describes the dynamics of the kaon con-
densate in the color-flavor locked phase of high density QCD. We describe the spectrum of low energy
excitations in this dynamics and show that, despite the presence of a condensate and gapless excitations,
this system is not a superfluid.

DOI: 10.1103/PhysRevLett.88.111601 PACS numbers: 11.30.Qc, 12.38.Aw, 21.65.+f

The Goldstone theorem is a cornerstone of the phenome-
non of spontaneous breakdown of continuous global sym-
metries. It is applicable both to relativistic field theories
with exact Lorentz symmetry [1] and to most condensed
matter systems [2] where this symmetry is absent. How-
ever, there is an important difference between these two
cases. While in Lorentz invariant systems, the Goldstone
theorem is universally valid, it is not so in condensed
matter systems. For example, it does not apply to con-
densed matter systems with long range interactions [2].
From the technical viewpoint, the difference is connected
with a kinetic term, and derivative terms, in general, in a
Lagrangian density: while their form is severely restricted
by the Lorentz symmetry, it is much more flexible in sys-
tems where this symmetry is absent.

In this Letter, we describe the phenomenon of sponta-
neous symmetry breaking of continuous symmetries with
an abnormal number of Nambu-Goldstone (NG) bosons
taking place at a sufficiently high density of matter in a
class of models without long range interactions. Here by
“abnormal” we understand that the number of gapless NG
bosons is less than the number of the generators in the coset
space G!H, where G is a symmetry of the action and H
is a symmetry of the ground state. On the other hand,
as we shall see below, the degeneracy of the ground state
remains conventional: it is described by transformations
connected with all the generators from the coset space. It
is noticeable that this class of models describes a recently
suggested [3–5] scenario with a kaon condensate in the
color-flavor locked (CFL) phase of high density QCD [6].

We illustrate this phenomenon in a toy model with the
following Lagrangian density:

L ! "≠0 1 im#Fy"≠0 2 im#F
2 y2≠iF

y≠iF 2 m2FyF 2 l"FyF#2, (1)

where F is a complex doublet field and y is a velocity
parameter. Since here the Lorentz symmetry is broken
by the terms with the chemical potential m, the velocity

y # 1 in general. The chemical potential m is provided
by external conditions (to be specific, we take m . 0) [7].
The above Lagrangian density is invariant under global
SU"2# 3 U"1#. The SU"2# is treated as the isospin group I
and the U"1# is associated with hypercharge Y . The electric
charge is Q ! I3 1 Y . This model describes the essence
of the dynamics of the kaon condensate [4] (see below).

When m , m, it is straightforward to derive the tree
level spectrum of the physical degrees of freedom. To this
end, we switch to the momentum space by decomposing
all four real components of the F field in plane waves.
Then, the quadratic part of the above Lagrangian density
takes the following form:

L "2#"v, q# !
1
2

" f!
1 f!

2 #M
µ

f1

f2

∂

1
1
2

" f̃!
1 f̃!

2 #M̃
µ

f̃1

f̃2

∂

, (2)

where the real and imaginary parts of each component
of the doublet were introduced, FT ! 1!

p
2 "f1 1 if2,

f̃1 1 if̃2#. Note that their Fourier transforms satisfy
f!

i "v, "k# ! fi"2v, 2"k# and f̃!
i "v, "k# ! f̃i"2v, 2"k#.

The matrices M and M̃ in Eq. (2) read
µ

v2 1 m2 2 m2 2 y2q2 2imv
22imv v2 1 m2 2 m2 2 y2q2

∂

.

(3)

The dispersion relations of the particles are determined
from the equation Det"M # ! 0. Explicitly, this equation
reads

$"v 2 m#2 2 m2 2 y2q2% 3

$"v 1 m#2 2 m2 2 y2q2% ! 0 ; (4)

i.e., the particle’s dispersion relations are

v1 ! ṽ1 ! 6"
p

m2 1 y2q2 1 m# , (5)

v2 ! ṽ2 ! 6"
p

m2 1 y2q2 2 m# . (6)

111601-1 0031-9007!02!88(11)!111601(4)$20.00 © 2002 The American Physical Society 111601-1

Abnormal number of Nambu-Goldstone bosons in the color-asymmetric dense color
superconducting phase of a Nambu–Jona-Lasinio–type model

D. Blaschke*
Fachbereich Physik, Universität Rostock, D-18051 Rostock, Germany

Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia

D. Ebert†
Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany

K. G. Klimenko‡
Institute of High Energy Physics, 142281 Protvino, Moscow Region, Russia

M. K. Volkov and V. L. Yudichev§
Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia

!Received 16 March 2004; published 27 July 2004"

We consider an extended Nambu–Jona-Lasinio model including both (qq̄) and !qq" interactions with two
light-quark flavors in the presence of a single !quark density" chemical potential. In the color superconducting
phase of the quark matter the color SUc(3) symmetry is spontaneously broken down to SUc(2). If the usual
counting of Goldstone bosons would apply, five Nambu-Goldstone !NG" bosons corresponding to the five
broken color generators should appear in the mass spectrum. Unlike that expectation, we find only three
gapless diquark excitations of quark matter. One of them is an SUc(2) singlet; the remaining two form an
SUc(2) !anti"doublet and have a quadratic dispersion law in the small momentum limit. These results are in
agreement with the Nielsen-Chadha theorem, according to which NG bosons in Lorentz-noninvariant systems,
having a quadratic dispersion law, must be counted differently. The origin of the abnormal number of NG
bosons is shown to be related to a nonvanishing expectation value of the color charge operator Q8 reflecting the
lack of color neutrality of the ground state. Finally, by requiring color neutrality, two massive diquarks are
argued to become massless, resulting in a normal number of five NG bosons with the usual linear dispersion
laws.

DOI: 10.1103/PhysRevD.70.014006 PACS number!s": 12.39.!x, 11.30.Qc, 21.65."f

I. INTRODUCTION

It is well known that, in accordance with the Goldstone
theorem #1,2$, N Nambu-Goldstone !NG" bosons appear in
Lorentz-invariant systems if an internal continuous symme-
try group G is spontaneously broken down to a subgroup H
!here N is the number of generators in the coset space G/H);
i.e., the number of NG modes is equal to the number of
broken generators. However, in Lorentz-noninvariant sys-
tems the number of NG bosons can be less than N. In this
case, the counting of NG bosons is regulated by the Nielsen-
Chadha !NC" theorem #3$: Let n1 and n2 be the numbers of
gapless excitations that in the limit of long wavelengths have
the dispersion laws E%!p! ! and E%!p! !2, respectively; then,
N&n1"2n2. !Here, E is the energy and p! is the three-
momentum of the particle." In particular, this theorem is
valid for relativistically covariant theories as well, since in
this case !i" the total number of NG bosons equals N, the
number of broken symmetry generators #2$; !ii" evidently,

the dispersion law for these N massless excitations looks like
E%!p! !, thus N#n1.
Recently, in some relativistic models describing the dy-

namics of the kaon condensate in the color-flavor-locked
phase of dense quark matter, an abnormal number of NG
bosons has been revealed #4,5$. The same is true for models
with a massive relativistic vector fields interaction in the
presence of a chemical potential #6$. Since the Lorentz in-
variance is broken in this case and some of the gapless ex-
citations have a quadratic dispersion law, there are no con-
tradictions with either Goldstone or NC theorems. The
superfluid 3He in the A phase #7$ and ferromagnets #8,9$ are
other known examples of condensed-matter systems with an
abnormal number of NG bosons.
In the present paper, we demonstrate the abnormal num-

ber of NG bosons in the dense color superconducting phase
!2SC" of quark matter for a simple version of the Nambu–
Jona-Lasinio !NJL" model with two light quarks and a single
!quark number" chemical potential. In this phase, which can
be realized naturally only at sufficiently large values of the
chemical potential (300 MeV&'$1 GeV), the initial color
SUc(3) symmetry is spontaneously broken down to the
SUc(2) group. Hence, in accordance with the usual counting
of the Goldstone theorem, one might expect five NG bosons,
corresponding to the five broken symmetry generators, to

*Electronic address: david.blaschke@physik.uni-rostock.de
†Electronic address: debert@physik.hu-berlin.de
‡Electronic address: kklim@mx.ihep.su
§Electronic address: yudichev@thsun1.jinr.ru
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Superfluidity in a three-flavor Fermi gas with SU„3… symmetry

Lianyi He, Meng Jin, and Pengfei Zhuang
Physics Department, Tsinghua University, Beijing 100084, China

!Received 26 April 2006; published 8 September 2006"

We investigate the superfluidity and the associated Nambu-Goldstone modes in a three-flavor atomic Fermi
gas with SU!3" global symmetry. The s-wave pairing occurs in flavor antitriplet channel due to the Pauli
principle, and the superfluid state contains both gapped and gapless fermionic excitations. Corresponding to the
spontaneous breaking of the SU!3" symmetry to a SU!2" symmetry with five broken generators, there are only
three Nambu-Goldstone modes, one is with linear dispersion law and two are with quadratic dispersion law.
The other two expected Nambu-Goldstone modes become massive with a mass gap of the order of the fermion
energy gap in a wide coupling range. The abnormal number of Nambu-Goldstone modes, the quadratic dis-
persion law, and the mass gap have significant effect on the low-temperature thermodynamics of the matter.

DOI: 10.1103/PhysRevA.74.033604 PACS number!s": 03.75.Ss, 05.30.Fk, 74.20.Fg, 34.90.!q

I. INTRODUCTION

The superfluidity in strongly interacting atomic Fermi gas
and the associated BCS-BEC !Bose-Einstein Condensation"
crossover phenomena #1–3$ have been observed in experi-
ments #4–7$ via the method of Feshbach resonance. The ex-
perimental study of superfluidity in atomic Fermi gas may be
important for us to understand the solid-state phenomena
such as high-temperature superconductivity, and may give
some clue to search for the ground state of the dense quark
matter and nuclear matter. In the past years, most theoretical
and experimental studies concentrated on the two-flavor sys-
tems such as a 6Li gas with the two lowest hyperfine states.
!In this paper, we use the word “flavor” in particle physics to
denote the internal degrees of freedom of the fermionic at-
oms." Compared to electrons in solids, atomic systems offer
more internal degrees of freedom. For alkali atoms, nuclear
spin I and electron spin S are combined in a hyperfine state
with total angular momentum F. While typical electronic
systems are constrained to a SU!2" spin rotational symmetry,
the total angular momentum F can be larger than 1/2, result-
ing in 2F+1 hyperfine states differing by their azimuthal
quantum number mF. Therefore, the atomic Fermi gas can
provide us a way to study the superfluidity with broken sym-
metry higher than the U!1" one. In this paper, we will focus
on a three-flavor system with a SU!3" global symmetry. Such
a system has been investigated in some works #8–10$.

It is well-known that, associated with the spontaneous
breaking of a global symmetry, there should be correspond-
ing Nambu-Goldstone !NG" bosons. Such NG bosons domi-
nate the low-temperature thermodynamics of the system. Ac-
cording to the Goldstone theorem #11,12$, if an internal
continuous symmetry group is spontaneously broken down
to a subgroup with N broken generators, N NG bosons ap-
pear in Lorentz-invariant systems, i.e., the number of NG
bosons is equal to the number of broken generators. How-
ever, from the Nielsen-Chadha !NC" theorem #13$, for sys-
tems without Lorentz invariance the number of NG bosons
can be less than the number of broken generators. Let N1 and
N2 be the numbers of gapless excitations which have, respec-
tively, the dispersion laws "%&p! & and "%&p! &2 in the limit of
long wavelength, the number of broken generators satisfies

the relation N#N1+2N2. For the equality between the num-
ber of NG bosons and the number of the broken generators,
there is an important criterion: If '#Qi ,Qj$(=0 for any two
broken generators Qi and Qj, i , j=1,2 , . . . ,N, the number of
NG bosons is equal to the number of the broken generators
#14$.

For the three-flavor Fermi gas with SU!3" symmetry we
will consider in this paper, the ground state of the system
contains both gapped and gapless fermionic excitations.
When the SU!3" symmetry is spontaneously broken to a
SU!2" subgroup with five broken generators, we will show
with an explicit calculation that there are only three NG
modes. Among them, one has linear dispersion law and the
other two have quadratic dispersion law. The reason for the
abnormal number of NG modes and the appearance of qua-
dratic dispersion law is found to be the fact that the condition
'#Qi ,Qj$(=0 is not satisfied due to the density imbalance
between the gapped and gapless fermions.

The abnormal number of NG modes and the nonlinear
dispersion law were widely discussed in relativistic field
theory at finite density #14–16$. They were also found in the
study of two-flavor color superconductivity in the Nambu–
Jona-Lasinio model #17$ where the condition '#Qi ,Qj$(=0 is
not satisfied due to the lack of color neutrality. However, the
abnormal number of NG bosons cannot be realized in super-
fluid quark matter and has no observable effect, since the
color neutrality should be imposed via some mechanism
such as gluon condensation and the NG bosons should be
eaten up by the gluons via the Higgs mechanism. In atomic
Fermi gas, there is no constraint like the color neutrality, and
the NG modes are physical degrees of freedom which domi-
nate the low temperature thermodynamics of the system. The
theoretic prediction of the NG modes may be tested in future
experiments via the measurement of the thermodynamic
quantities. In addition, the mass gap of the two massive col-
lective modes found in #17$ is very small compared with the
quark energy gap, while the corresponding mass gap in the
three-flavor Fermi gas is of the order of the fermion energy
gap, which makes remarkable effect on the low-temperature
thermodynamics.

The paper is organized as follows. In Sec. II, we set up the
model for the three-flavor Fermi gas with SU!3" global sym-

PHYSICAL REVIEW A 74, 033604 !2006"
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Spontaneous Breaking of Lie and Current Algebras
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The anomalous properties of Nambu–Goldstone bosons, found by Miransky
and others in the symmetry breaking induced by a chemical potential, are
attributed to the SSB of Lie and current algebras. Ferromagnetism, antiferro-
magnetism, and their relativistic analogs are discussed as examples.2

KEY WORDS: Symmetry breaking; Nambu–Goldstone boson; color super-
conductivity; chemical potential; ferromganetism; Lorentz symmetry; current
algebra.

1. INTRODUCTION AND SUMMARY

In general the number of the Nambu–Goldstone (NG) bosons associated
with a spontaneous symmetry breaking (SSB) GQH is equal to the
number of symmetry generators Qi in the coset G/H. In the absence of a
gauge field, their energy w goes as a power kc of wave number. In a rela-
tivistic theory, c=1 necessarily unless Lorentz invariance is broken.
There are, however, exceptions to the above ‘‘theorem.’’ (1–5) Recently

one was found to occur in connection with color superconductivity in high
density quark matter, where finite quark masses act like a chemical poten-
tial, and can trigger a kaon condensation. Two of the expected three NG
modes coalesce into one, with c=2. I would like to give a dynamical
explanation to the phenomenon.
I will first state the main result, which has a general validity. Suppose

a symmetry generator (charge) Q develops a vacuum expectation value
OQP=C. If two other charges Qi, Qj are such that their commutator
[Qi, Qj]=iQ, then their corresponding zero modes Zi, Zj behave like



Main points 
= simple points

H. Watanabe and HM, arXiv:1203.0609

see also Y. Hidaka, arXiv:1203.1494



Heisenberg models

• anti-ferromagnet	


• ferromagnet

H = +J
X

hi,ji

~si · ~sj

H = �J
X

hi,ji

~si · ~sj

2 NGBs

1 NGB

E / p

E / p2

h0|J0
z |0i = 0

Jx and Jy canonically conjugate to each other cf. [x, p]=i ħ	

describing a single degree of freedom together

h0|J
z

|0i = �ih0|[J
x

, J
y

]|0i 6= 0

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b



General formula

• Define a commutator among broken 
generators 	


• nB = 1/2 rank ρ counts the number of 
canonically conjugate pairs (Type-B)	

• each pair describes one d.o.f.	


• the remainder nA = nBG – 2nB 	

• stand-alone NGB d.o.f. (Type-A)

nNGB = nA + nB = nBG � 1

2
rank⇢

⇢ab =
�i

V
h0|[Qa, Qb]|0i

conjectured by Watanabe and Brauner

generically E / p2

generically E / p



Applications
example coset space BG NGB rank ρ theorem

anti-ferromagnet O(3)/O(2) 2 2 0 2=2-0
ferromagnet	
 O(3)/O(2) 2 1 2 1=2-1

superfluid 4He U(1) 1 1 0 1=1-0
superfluid 3He B phase O(3)xO(3)xU(1)/O(2) 4 4 0 4=4-0

(in magnetic field) O(2)xO(3)xU(1)/O(2) 4 3 2 3=4-1
BEC (F=0) U(1) 1 1 0 1=1-0

BEC (F=1) polar O(3)xU(1)/U(1) 3 3 0 3=3-0
BEC (F=1) ferro O(3)xU(1)/SO(2) 3 2 2 2=3-1

3-comp. Fermi liquid U(3)/U(2)	
 5 3 4 3=5-2
neutron star U(1) 1 1 0 1=1-0

kaon cond. (µ=0) U(2)/U(1) 3 3 0 3=3-0
kaon cond. (µ≠0) U(2)/U(1) 3 2 2 2=3-1

crystal R3/Z3 3 3 0 3=3-0
(in magnetic field) R3/Z3 3 2 2 2=3-1

nNGB = nBG � 1

2
rank⇢



Formalism 
–Internal Symmetries–

H. Watanabe and HM, arXiv:1203.0609	

full paper in preparation



Low-E Effective Theory 
w/ Lorentz-invariance
• consider πa(x) fields: R3,1 → G/H (“pions”)	


• Write action S=∫d4x L(π,∂π)             
which is G-invariant	


• expand in powers of derivative, keep low 
orders (often up to the second order)	


• Lorentz invariance dictates the action to be 
S=∫d4x gab(π) ∂μπa ∂μπb	


• only data needed is G-inv metric on G/H	

• indeed, nNGB=nBG

For SO(3)/SO(2)=S2, S = F

2

Z
d

4
x@µn

i
@

µ
n

i



Low-E Effective Theory 
w/o Lorentz-invariance
• consider πa(x) fields: R3,1 → G/H (“pions”)	


• Write action S=∫d4x L(π, ∂tπ, ∂xπ)   
which is G-invariant up to a surface term	


• expand in powers of derivative, keep low 
orders (often up to the second order)	


• E=ħω∝∂t π , p=ħk∝∂x π	

• typically up to second powers	

• assume translation & rotation inv. of space



non-Lorentz-inv case

• simple generalization to non-Lorentz 
invariant case, two “metrics” may differ 	


• in particular, their relative normalization cs
2 

may not be c2	


• more importantly, there is one additional 
term possible in general (Leutwyler)

Le↵ = ḡab(⇡)⇡̇
a⇡̇b � gab(⇡)ri⇡

ari⇡
b

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b

Le↵ = gab(⇡)@µ⇡
a@µ⇡b



spectrum

• around the origin	

• in the subspace where cab is invertible,	


• the ca term dominates over gab term E ≫ E2	


• broken Noether currents	


• Namely, for 	


• when ca present, E∝p2, otherwise E∝p !	

• πa, πb canonically conjugate, describe 1 dof

L = pq̇ �H

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b

[⇡a,⇡b] = �i(c�1)ab

j0a =
@Le↵

@⇡̇b
�a⇡

b = cba⇡
b

[j0a, Qb] = �iccacdb(c
�1)cd = icab

ca⇡̇
a ⇡ 1

2
⇢ab⇡

b⇡̇a

ca(⇡) = ca(0) +
1

2
cab⇡

b +O(⇡2)

⇢ab =
�i

V
h0|[Qa, Qb]|0i



Bottomline

• SSB leads to gapless excitations (NGBs)	

• Lorentz invariance: nNGB=nBG, E=cp	

• w/o Lorentz invariance:	

• Type A: ρab=0, E∝p	

• Type B: ρab≠0, E∝p2	

• nNGB=nA+nB	

• nBG=nA+2nB	


• explicit effective Lagrangian ⟹ interactions	

• underlying partially symplectic geometry

ca⇡̇
a ⇡ 1

2
⇢ab⇡

b⇡̇a

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b

Le↵ =
n
x

ṅ
y

� n
y

ṅ
x

1 + n
z

� ~rn
i

~rn
iFor SO(3)/SO(2)=S2, 

⇢ab =
�i

V
h0|[Qa, Qb]|0i



geometry

• What is ca(π)?	

• it defines one-form c1=ca(π) dπa on G/H	

• L must be G-invariant up to a surface term	


• its exterior derivative is G-invariant	


• Namely, G/H is endowed with a G-invariant 
closed two-form ω2 (may be degenerate)

presymplectic structure

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b

LVic1 = d�

!2 = dc1

LVi!2 = dLVic1 = d2� = 0

!2 =
X

i

dpi ^ dqiDarboux’s theorem:



LVic = iVidc+ d(iVic) = dei + d(iVic)

geometry

• What is ca(π)?	

• it defines one-form c1=ca(π) dπa on G/H	

• L must be G-invariant up to a surface term	


• the Noether current picks up surface term	


• in the ground state = stationary:	


• it is “charge density” of the ground state

dei = iVi!

j0i = �ḡabh
a
i ⇡̇

b + ei

h0|j0i |0i = ei(0)

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b



General Geometry

G/H

B

F

NGBs for generators a and b are symplectic pairs	

and describe a single degree of freedom

dimG� dimH = nA + 2nB

closed G-inv	

d c1 = π*ω2 π

symplectic	

homogeneousω2

!2 =
1

2
⇢abd⇡

a ^ d⇡b +O(⇡)3

Type A
E / p

Type B
E / p2

⇢ab =
�i

V
h0|[Qa, Qb]|0i

projection possible for compact semi-simple



• for compact semi-simple case, we found 
closed expressions

explicit construction

h0|j0i |0i = ei(0)

gU = U 0h0(⇡0, g)

! = U�1dU =
X

Tk!
k

c = �!kek(0)

gab(⇡) = gcd(0)!
c
a(⇡)!

d
b (⇡)



central extension

• If H2(g)≠0, a central extension zji≠0 
possible	


• impossible for semi-simple g 
• possible for multiple U(1)’s, R’s	

• important when magnetic field

dei = iVi!

LVjej = fji
kek + zji

LVjdej = LVj iVi! = i[Vj ,Vi]! + iViLVj! = fji
kiVk! = fji

kdek

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b



Examples: nBG=1

• spontaneously broken U(1): scalar BEC	


• the only difference from Lorentz-invariant 
case is the metric can have different 
normalization for space and time	


• it is the speed of sound

L =
1

2
✓̇2 � 1

2
c2s(~r✓)2

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b



Examples: nBG=2

• R2: invariant closed two-form is	


• the leading terms are	


• free non-rel particle with one dof, E ∝ p2	


• or 2d lattice in B, with one dof, E ∝ p2

Le↵ =
i

2
z ˙̄z � 1

2m
~rz~rz̄

[z(x), z̄(y)] = �i�(x� y) central extension H2(R2)≠0

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b

!2 = dx ^ dy =
i

2
dz ^ dz̄

c1 =
i

2
zdz̄



Examples: nBG=2

• R2: invariant closed two-form is	


• But if c1 absent, need to consider 2nd term	


• e.g., 2D lattice with two dof, E ∝ p

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b

Le↵ =
1

2
(ẋ2 + ẏ

2)� 1

2
c

2
s((~rx)2 + (~ry)2)

!2 = dx ^ dy =
i

2
dz ^ dz̄

c1 =
i

2
zdz̄



Examples: nBG=2

• S2: SO(3)-invariant closed two-form is	


• the leading terms are	


• ferromagnet with one dof, E ∝ p2

Le↵ =
1

2

n
y

ṅ
x

� n
x

ṅ
y

1 + n
z

� c2
s

1

2
~rn

i

~rn
i

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b

!2 = d(cos ✓) ^ d�

dc1 =

1

2

d
n
y

dn
x

� n
x

dn
y

1 + n
z

= d[(�1 + cos ✓)d�]



Examples: nBG=2

• S2: SO(3)-invariant closed two-form is	


• But if c1 absent, need to consider 2nd term	


• anti-ferromagnet with two dof, E ∝ p

Le↵ =
1

2
ṅiṅi � c2s

1

2
~rni

~rni

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b

!2 = d(cos ✓) ^ d�

dc1 =

1

2

d
n
y

dn
x

� n
x

dn
y

1 + n
z

= d[(�1 + cos ✓)d�]



Examples: nBG=3

• SO(3)×U(1)/SO(2) = RP3=S3/Z2	


• spinor BEC ferromagnetic phase:	


• one dof with E ∝ p2, one dof with E ∝ p

 † = v2

Hopf map RP3→S2 down to a symplectic homogeneous S2

 = v
ei✓p

2(1 + z̄z)

0

@
1� z2

i(1 + z2)
2z

1

A

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b

 ⇤i ̇ = v2
✓
�✓̇ + i

z⇤ż � ż⇤z

1 + z⇤z

◆



Examples: nBG=3

• SO(3)×U(1)/SO(2) = (S2×S1)/Z2	


• spinor BEC polar phase:	


• three dof with E ∝ p	


• vanishing presymplectic structure

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b

 = vei✓~n ~n2 = 1

 ⇤i ̇ = v2i✓̇ ⇡ 0



Examples: nBG=3

• U(2)/U(1)=S3 (kaon condensation): 	


• the leading terms are	


• one dof with E ∝ p2, one dof with E ∝ p

 † = v2 = v
ei✓p
1 + z̄z

✓
1
z

◆

i † ̇ = �✓̇ + i
1

2

z̄ż � ˙̄zz

1 + z̄z

Le↵ = +i
1

2

z̄ż � ˙̄zz

1 + z̄z
+

✓
✓̇ � i

1

2

z̄ż � ˙̄zz

1 + z̄z

◆2

= �

2

4
 
~r✓ � i

1

2

z̄~rz � ~rz̄z

1 + z̄z

!2

+ 2
~rz̄~rz

(1 + z̄z)2

3

5

Hopf map S3→S2 down to a symplectic homogeneous S2

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b

chemical potential



General Geometry

G/H

B

F

NGBs for generators a and b are symplectic pairs	

and describe a single degree of freedom

dimG� dimH = nA + 2nB

closed G-inv	

d c = π*ω2 π

symplectic	

homogeneousω2

!2 =
1

2
⇢abd⇡

a ^ d⇡b +O(⇡)3

Type A
E / p

Type B
E / p2

⇢ab =
�i

V
h0|[Qa, Qb]|0i

U(N)/U(N–1)=S2N–1

CPN

U(1)



Applications
example coset space BG NGB rank ρ theorem

anti-ferromagnet O(3)/O(2) 2 2 0 2=2-0
ferromagnet	
 O(3)/O(2) 2 1 2 1=2-1

superfluid 4He U(1) 1 1 0 1=1-0
superfluid 3He B phase O(3)xO(3)xU(1)/O(2) 4 4 0 4=4-0

(in magnetic field) O(2)xO(3)xU(1)/O(2) 4 3 2 3=4-1
BEC (F=0) U(1) 1 1 0 1=1-0

BEC (F=1) polar O(3)xU(1)/U(1) 3 3 0 3=3-0
BEC (F=1) ferro O(3)xU(1)/SO(2) 3 2 2 2=3-1

3-comp. Fermi liquid U(3)/U(2)	
 5 3 4 3=5-2
neutron star U(1) 1 1 0 1=1-0

kaon cond. (µ=0) U(2)/U(1) 3 3 0 3=3-0
kaon cond. (µ≠0) U(2)/U(1) 3 2 2 2=3-1

crystal R3/Z3 3 3 0 3=3-0
(in magnetic field) R3/Z3 3 2 2 2=3-1

nNGB = nBG � 1

2
rank⇢



stability@T=0 in d+1dim

• Type A:	


• scaling	


• interaction	


• IR free for d≥2 (d=1 symmetry restored)	


• Type B:	


• scaling	


• interaction	


• IR free for d≥1

~x

0 = a~x, t

0 = at

~x

0 = a~x, t

0 = a

2
t

Le↵ = ḡab⇡̇
a⇡̇b � gabri⇡

ar⇡b

Le↵ = ⇢ab⇡
a⇡̇b � gabri⇡

ar⇡b

⇡

0a(a~x, at) = a

(1�d)/2
⇡

a(~x, t)

⇡

0a(a~x, a2t) = a

�d/2
⇡

a(~x, t)

ri⇡
ari⇡

b⇡c ⇠ a�(d�1)/2

à la Hořava-Lifshitz

ri⇡
ari⇡

b⇡c ⇠ a�d/2



Previously Known 
Theorems



Nielsen-Chadha 
theorem

• Type-I if E ∝ p2n+1	


• Type-II if E ∝ p2n	


• Proved nI+2nII≥nBG	


• only an inequality, a weak statement	

• follows from our result nA+2nB=nBG because 

Type-A (B) is generically Type-I (II)	

• but not the same if O(∇2) term absent and 

L starts with O(∇4), then Type-A but Type-II

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b



Schäfer et al theorem

• If ρab = –i〈0| [Qa, Qb] |0〉/ V =0	


• then no Type-B	

• nNGB = nBG = nA

conjectured by Watanabe and Brauner

nNGB = nBG � 1

2
rank⇢

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b

ca⇡̇
a ⇡ 1

2
⇢ab⇡

b⇡̇a



no-go case

• Not every NGBs can be paired as Type-B	


• SU(3)/U(1)2: Kähler and symplectic

Type-A Type-B nA+2nB=6

6 0 6

4 1 6

2 2 6

0 3 6



redundancies

H. Watanabe and HM, arXiv:1203.0609	

another one in preparation w/ T. Brauner



spacetime symmetries

• so far all discussions are internal 
symmetries	


• but there are situations when nNGB is 
further reduced for spacetime symmetries	


• spontaneously broken scale and conformal 
symmetries lead to only one NGB (dilaton) 
(Salam-Strathdee)	


• crystal breaks both translations (Pi) and 
rotations (Ji), but only phonons for Pi



Noether constraints

• They can be understood as a consequence 
of Noether constraints	


• For broken symmetries, we have	


• then they are linearly redundant

Z
d

d
x

X

a

ca(x)j
0
a(x)|0i = 0

h⇡b|j0a(x)|0i 6= 0

0 =
X

b

|⇡bih⇡b|
Z

d

d
x

X

a

ca(x)j
0
a(x)|0i

=
X

b

|⇡bi
Z

d

d
xca(x)h⇡b|j0b (x)|0i



Examples

• crystal: translations and rotations are both 
spontaneously broken	


• they are both generated by the energy-
momentum tensor	


• would-be NGBs for rotations are the same 
excitations as those for translations 
(phonons)

R

0i = ✏ijkx
j
T

0k



Examples
• Ginzburg-Landau theory	


• G=U(1), H=0	


• 4He superfluid	


• scalar BEC	


• U(1)	


• Galilean boost	


• both broken nBG=1+3=4

V = �µ ⇤ + �( ⇤ )2

Figure 4: Taken from D.G. Henshaw and A.D.B. Woods, Phys. Rev., 121,
1266 (1961).

14

Figure 3: The measured excitation spectrum !(k) of a trapped Bose-Einstein
condensate. The solid line is the Bogoliubov spectrum with no free parame-
ters, in the local density approximation (LDA) for µ = 1.91 kHz. The dashed
line is the parabolic free-particle spectrum. For most points, the error bars
are not visible on the scale of the figure. The inset shows the linear phonon
regime. Taken from J. Steinhauser et al ., Phys. Rev. Lett., 88, 120407
(2002).

After quantization, this becomes a quasi-particle (elementary excitation of a
collective system) called phonon with the energy E = c

s

|~p|.
On the other hand, at large momentum, the dispersion relation Eq. (51)

can be approxiimated as

E(~p) ' ~p2

2m
+ µ + O(~p2)�1 (53)

and hence it is the same as the single particle excitation except the o↵set
µ = c2

s

m. This is called the excitation in the free-particle regime.
In the case of liquid 4He, the interaction is quite strong and the linearized

analysis fails. The dispersion relation rises linearly in the phonon-regime but
it turns around the develops a minimum called “roton” (see Fig. 4). As
far as I know, there is no first-principle calculation of this spectrum. The
interaction is too strong for the perturbation theory to be valid to make
reliable quantitative predictions.

The linear dispersion in the phonon regime is important because it is the
very reason for superfluidity. Suppose the condensate is flowing with velocity
~v past a macroscopic obstruction of mass M . It is more convenient to go to

13

h0| |0i 6= 0

 (~x, t) ! e

i✓
 (~x, t)

 (~x, t) ! e

i(m~x·~x� 1
2m~v

2
t)
 (~x� ~vt, t)

B

iµ = tT

iµ �mx

i
j

µ

⇒ no separate NGBs for Galilean boosts



vortex lattice

• rotate a (2d) BEC	


• vortices form a 
triangular lattice	


• broken: U(1), Px,y, Jz	


• only one Type-A NGB 
with 	


• called Tkachenko mode

E / p2

T

0i = mj

i � 2m⌦✏ijxj
j

0

we have a precise effective Lagrangian for this



relation to inverse 
Higgs mechanism

• old idea called “inverse Higgs mechanism” is 
used to eliminate spurious NGBs in case of 
spacetime symmetries E.A. Ivanov and V.I. 
Ogievetskii, 1975	


• not much discussed in cases without 
Lorentz invariance	


• not applicable when translation is broken	

• recently more papers	

• Endlich, Nicolis, Penco, arXiv:1310.2272	

• Hayata, Hidaka, arXiv:1312.0008



massive NGB

H. Watanabe, T. Brauner, and HM, arXiv:1303.1527



Nicolis-Piazza

• normally, we can say few things about 
gapped modes based on symmetries alone 
(cf. BPS)	


• They pointed out in Lorentz-invariant 
systems and broken symmetries, some gaps 
can be predicted exactly with group theory

H̃ = H � µQ
[Q,E±↵] = ±↵E±↵

H̃(E↵|0i) = µ↵(E↵|0i)
but not for the conjugate generator



massive NGB

• It turns out the system does not need to 
be Lorentz invariant, nor Q broken	


• quite general result applicable in many 
systems

nmNGB =
1

2
(rank⇢� rank⇢̃)

[Q̃a, H̃] = [Q̃a, H � µQ] = 0

[Qa, H] = 0

⇢̃ab =
�i

V
h0|[Q̃a, Q̃b]|0i

⇢ab =
�i

V
h0|[Qa, Qb]|0i

H̃(E↵|0i) = µ↵(E↵|0i)



Examples

• ferromagnet and anti-ferromagnet in a 
constant magnetic field	


• relativistic BECs, kaon condensation	


• QCD with chemical potential for isospin	


• many examples previously known based on 
approximation methods, now are exact



Conclusion

• age-old subject, yet still a lot to learn!	


• for internal symmetries, precise counting 
rule and dispersion relation of NGBs finally 
known	


• underlying geometry: presymplectic structure	


• redundancies make sense for spacetime 
symmetries	


• exact predictions on massive NGBs à la BPS
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Field Theories with ((Superconductor** Solutions. 

J.  GOLDSTONE 

C E R N  - G e n e v a  

(rieevuto 1'8 Settembre 1960) 

S u m m a r y .  - -  T h e  conditions for the existence of non-perturbative type 
~ superconductor ~) solutions of field theories are examined. A non-covariant 
canonical transformation method is used to find such solutions for a theory 
of a fermion interacting with a pseudoscalar bosom A covariant renor- 
malisable method using Feynman integrals is then given. A (~ supercon- 
ductor ~) solution is found whenever in the normal perturbative-type 
solution the boson mass squared is negative and the coupling constants 
satisfy certain inequalities. The symmetry properties of such solutions 
are examined with the aid of a simple model of self-interacting boson 
fields. The solutions have lower symmetry than the Lagrangian, and 
contain mass zero bosons. 

1 .  - I n t r o d u c t i o n .  

This paper reports some work on the possible existence of field theories 
with solutions analogous to the Bardeen model of a superconductor.  This 
possibility has been discussed by  NAMer (1) in a report  which presents the 
general ideas of the theory which will not  be repeated here. The present work 
merely considers models and has no direct physical applications bu t  the nature  
of these theories seems worthwhile exploring. 

The models considered here all have a boson field in them from the be- 
ginning. I t  would be more desirable to construct  bosons out of fermions and 
this type  of theory  does contain tha t  possibility (1). The theories of this paper 
have the dubious advantage  of being renormalisable, which at  least allows 
one to find simple conditions in finite terms for the existence of (( supercon- 

(1) y .  ~A~BU: Enrico Fermi Institute for l~uclear Studies, Chicago, Report 60-21. 
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pathology

• In the presence of central extension, there 
are examples where the presymplectic 
structure cannot be projected down to a 
symplectic homogeneous space	


• T3 with	

• if r irrational, the projection would be 

dense and ill-defined	

• I consider such a case pathological
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