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Abstract

This lecture was given at TASI 2000, Flaovor Physics in the New
Millennium, July, 2000, Boulder, Colorado. It reviews supersymmetry
and emphasizes its flavor physics aspects.

1 Motivation for Supersymmetry

1.1 Problems in the Standard Model

The Standard Model of particle physics, albeit extremely successful phe-
nomenologically, has been regarded only as a low-energy effective theory of
the yet-more-fundamental theory. One can list many reasons why we think
this way, but a few are named below.

First of all, the quantum number assignments of the fermions under the
standard SU(3)C × SU(2)L × U(1)Y gauge group (Table 1) appear utterly
bizarre. Probably the hypercharges are the weirdest of all. These assign-
ments, however, are crucial to guarantee the cancellation of anomalies which
could jeopardize the gauge invariance at the quantum level, rendering the
theory inconsistent. Another related puzzle is why the hypercharges are
quantized in the unit of 1/6. In principle, the hypercharges can be any num-
bers, even irrational. However, the quantized hypercharges are responsible

1



Table 1: The fermionic particle content of the Standard Model. Here we’ve
put primes on the neutrinos in the same spirit of putting primes on the
down-quarks in the quark doublets, indicating that the mass eigenstates are
rotated by the MNS and CKM matrices, respectively. The subscripts g, r, b
refer to colors.
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Table 2: The bosonic particle content of the Standard Model.
W 1,W 2, H+, H− −→ W+,W−

W 3, B, Im(H0) −→ γ, Z
g × 8
ReH0 −→ H
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for neutrality of bulk matter Q(e) + 2Q(u) +Q(d) = Q(u) + 2Q(d) = 0 at a
precision of 10−21 [1].

The gauge group itself poses a question as well. Why are there seemingly
unrelated three independent gauge groups, which somehow conspire together
to have anomaly-free particle content in a non-trivial way? Why is “the
strong interaction” strong and “the weak interaction” weaker?

The essential ingredient in the Standard Model which appears the ugliest
to most people is the electroweak symmetry breaking. In the list of bosons in
the Standard Model Table 2, the gauge multiplets are necessary consequences
of the gauge theories, and they appear natural. They of course all carry spin
1. However, there is only one spinless multiplet in the Standard Model: the
Higgs doublet

(

H+

H0

)

(1.1)

which condenses in the vacuum due to the Mexican-hat potential (described
in Section 1.4). It is introduced just for the purpose of breaking the elec-
troweak symmetry SU(2)L × U(1)Y → U(1)QED. The potential has to be
arranged in a way to break the symmetry without any microscopic explana-
tions.

Why is there a seemingly unnecessary three-fold repetition of “genera-
tions”? Even the second generation led the Nobel Laureate I. I. Rabi to ask:
“Who ordered the muon?” Now we face the even more puzzling question of
having three generations. And why do the fermions have a mass spectrum
which stretches over almost six orders of magnitude between the electron
and the top quark? This question becomes even more serious once we con-
sider the recent evidence for neutrino oscillations which suggest the mass of
the third-generation neutrino ν ′τ of about 0.05 eV [2]. This makes the mass
spectrum stretch over thirteen orders of magnitude. We have no concrete
understanding of the mass spectrum nor the mixing patterns.

1.2 Drive to go to Shorter Distances

All the puzzles raised in the previous section (and more) cry out for a more
fundamental theory underlying the Standard Model. What history suggests
is that the fundamental theory lies always at shorter distances than the
distance scale of the problem. For instance, the equation of state of the ideal
gas was found to be a simple consequence of the statistical mechanics of free
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molecules. The van der Waals equation, which describes the deviation from
the ideal one, was the consequence of the finite size of molecules and their
interactions. Mendeleev’s periodic table of chemical elements was understood
in terms of the bound electronic states, Pauli exclusion principle and spin.
The existence of varieties of nuclide was due to the composite nature of nuclei
made of protons and neutrons. The list would go on and on. Indeed, seeking
answers at more and more fundamental level is the heart of the physical
science, namely the reductionist approach.

The distance scale of the Standard Model is given by the size of the Higgs
boson condensate v = 250 GeV. In natural units, it gives the distance scale
of d = h̄c/v = 0.8 × 10−16 cm. We therefore would like to study physics at
distance scales shorter than this eventually, and try to answer puzzles whose
partial list was given in the previous section.

Then the idea must be that we imagine the Standard Model to be valid
down to a distance scale shorter than d, and then new physics will appear
which will take over the Standard Model. But applying the Standard Model
to a distance scale shorter than d poses a serious theoretical problem. In
order to make this point clear, we first describe a related problem in the
classical electromagnetism, and then discuss the case of the Standard Model
later along the same line [3].

1.3 Positron Analogue

In the classical electromagnetism, the only dynamical degrees of freedom are
electrons, electric fields, and magnetic fields. When an electron is present in
the vacuum, there is a Coulomb electric field around it, which has the energy
of

∆ECoulomb =
1

4πε0

e2

re
. (1.2)

Here, re is the “size” of the electron introduced to cutoff the divergent
Coulomb self-energy. Since this Coulomb self-energy is there for every elec-
tron, it has to be considered to be a part of the electron rest energy. There-
fore, the mass of the electron receives an additional contribution due to the
Coulomb self-energy:

(mec
2)obs = (mec

2)bare + ∆ECoulomb. (1.3)

Experimentally, we know that the “size” of the electron is small, re
<∼

10−17 cm. This implies that the self-energy ∆E is greater than 10 GeV
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Figure 1: The Coulomb self-energy of the electron.
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Figure 2: The bubble diagram which shows the fluctuation of the vacuum.

or so, and hence the “bare” electron mass must be negative to obtain the
observed mass of the electron, with a fine cancellation like

0.511 = −9999.489 + 10000.000MeV. (1.4)

Even setting a conceptual problem with a negative mass electron aside, such
a fine-cancellation between the “bare” mass of the electron and the Coulomb
self-energy appears ridiculous. In order for such a cancellation to be absent,
we conclude that the classical electromagnetism cannot be applied to distance
scales shorter than e2/(4πε0mec

2) = 2.8 × 10−13 cm. This is a long distance
in the present-day particle physics’ standard.

The resolution to this problem came from the discovery of the anti-particle
of the electron, the positron, or in other words by doubling the degrees of free-
dom in the theory. The Coulomb self-energy discussed above can be depicted
by a diagram Fig. 1 where the electron emits the Coulomb field (a virtual

e–

e+

γ

e–

Figure 3: Another contribution to the electron self-energy due to the fluctu-
ation of the vacuum.
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photon) which is absorbed later by the electron (the electron “feels” its own
Coulomb field).1 But now that we know that the positron exists (thanks to
Anderson back in 1932), and we also know that the world is quantum me-
chanical, one should think about the fluctuation of the “vacuum” where the
vacuum produces a pair of an electron and a positron out of nothing together
with a photon, within the time allowed by the energy-time uncertainty prin-
ciple ∆t ∼ h̄/∆E ∼ h̄/(2mec

2) (Fig. 2). This is a new phenomenon which
didn’t exist in the classical electrodynamics, and modifies physics below the
distance scale d ∼ c∆t ∼ h̄c/(2mec

2) = 200 × 10−13 cm. Therefore, the
classical electrodynamics actually did have a finite applicability only down
to this distance scale, much earlier than 2.8 × 10−13 cm as exhibited by the
problem of the fine cancellation above. Given this vacuum fluctuation pro-
cess, one should also consider a process where the electron sitting in the
vacuum by chance annihilates with the positron and the photon in the vac-
uum fluctuation, and the electron which used to be a part of the fluctuation
remains instead as a real electron (Fig. 3). V. Weisskopf [4] calculated this
contribution to the electron self-energy for the first time, and found that it
is negative and cancels the leading piece in the Coulomb self-energy exactly:

∆Epair = − 1

4πε0

e2

re
. (1.5)

After the linearly divergent piece 1/re is canceled, the leading contribution
in the re → 0 limit is given by

∆E = ∆ECoulomb + ∆Epair =
3α

4π
mec

2 log
h̄

mecre

. (1.6)

There are two important things to be said about this formula. First, the
correction ∆E is proportional to the electron mass and hence the total mass
is proportional to the “bare” mass of the electron,

(mec
2)obs = (mec

2)bare

[

1 +
3α

4π
log

h̄

mecre

]

. (1.7)

1The diagrams Figs. 1, 3 are not Feynman diagrams, but diagrams in the old-fashioned
perturbation theory with different T -orderings shown as separate diagrams. The Feynman
diagram for the self-energy is the same as Fig. 1, but represents the sum of Figs. 1, 3 and
hence the linear divergence is already cancelled within it. That is why we normally do not
hear/read about linearly divergent self-energy diagrams in the context of field theory.
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Therefore, we are talking about the “percentage” of the correction, rather
than a huge additive constant. Second, the correction depends only logarith-
mically on the “size” of the electron. As a result, the correction is only a
9% increase in the mass even for an electron as small as the Planck distance
re = 1/MP l = 1.6 × 10−33 cm.

The fact that the correction is proportional to the “bare” mass is a con-
sequence of a new symmetry present in the theory with the antiparticle (the
positron): the chiral symmetry. In the limit of the exact chiral symmetry, the
electron is massless and the symmetry protects the electron from acquiring
a mass from self-energy corrections. The finite mass of the electron breaks
the chiral symmetry explicitly, and because the self-energy correction should
vanish in the chiral symmetric limit (zero mass electron), the correction is
proportional to the electron mass. Therefore, the doubling of the degrees
of freedom and the cancellation of the power divergences lead to a sensible
theory of electron applicable to very short distance scales.

1.4 Supersymmetry

In the Standard Model, the Higgs potential is given by

V = µ2|H|2 + λ|H|4, (1.8)

where v2 = 〈H〉2 = −µ2/2λ = (176 GeV)2. Because perturbative unitarity
requires that λ <∼ 1, −µ2 is of the order of (100 GeV)2. However, the mass
squared parameter µ2 of the Higgs doublet receives a quadratically divergent
contribution from its self-energy corrections. For instance, the process where
the Higgs doublets splits into a pair of top quarks and come back to the
Higgs boson gives the self-energy correction

∆µ2
top = −6

h2
t

4π2

1

r2
H

, (1.9)

where rH is the “size” of the Higgs boson, and ht ≈ 1 is the top quark Yukawa
coupling. Based on the same argument in the previous section, this makes
the Standard Model not applicable below the distance scale of 10−17 cm.

The motivation for supersymmetry is to make the Standard Model appli-
cable to much shorter distances so that we can hope that answers to many
of the puzzles in the Standard Model can be given by physics at shorter dis-
tance scales [5]. In order to do so, supersymmetry repeats what history did
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with the positron: doubling the degrees of freedom with an explicitly broken
new symmetry. Then the top quark would have a superpartner, stop,2 whose
loop diagram gives another contribution to the Higgs boson self energy

∆µ2
stop = +6

h2
t

4π2

1

r2
H

. (1.10)

The leading pieces in 1/rH cancel between the top and stop contributions,
and one obtains the correction to be

∆µ2
top + ∆µ2

top = −6
h2

t

4π2
(m2

t̃ −m2
t ) log

1

r2
Hm

2
t̃

. (1.11)

One important difference from the positron case, however, is that the
mass of the stop, mt̃, is unknown. In order for the ∆µ2 to be of the same
order of magnitude as the tree-level value µ2 = −2λv2, we need m2

t̃
to be

not too far above the electroweak scale. Similar arguments apply to masses
of other superpartners that couple directly to the Higgs doublet. This is
the so-called naturalness constraint on the superparticle masses (for more
quantitative discussions, see papers [6]).

1.5 Other Directions

Of course, supersymmetry is not the only solution discussed in the literature
to avoid miraculously fine cancellations in the Higgs boson mass-squared
term. Technicolor (see a review [7]) is a beautiful idea which replaces the
Higgs doublet by a composite techni-quark condensate. Then rH ∼ 1 TeV
is a truly physical size of the Higgs doublet and there is no need for fine
cancellations. Despite the beauty of the idea, this direction has had problems
with generating fermion masses, especially the top quark mass, in a way
consistent with the constraints from the flavor-changing neutral currents.
The difficulties in the model building, however, do not necessarily mean that
the idea itself is wrong; indeed still efforts are being devoted to construct
realistic models.

Another recent idea is to lower the Planck scale down to the TeV scale by
employing large extra spatial dimensions [8]. This is a new direction which

2This is a terrible name, which was originally meant to be “scalar top.” If supersym-
metry will be discovered by the next generation collider experiments, we should seriously
look for better names for the superparticles.
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has just started, and there is an intensive activity to find constraints on the
idea as well as on model building. Since the field is still new, there is no
“standard” framework one can discuss at this point, but this is no surprise
given the fact that supersymmetry is still evolving even after almost two
decades of intense research.

One important remark about all these ideas is that they inevitably predict
interesting signals at TeV-scale collider experiments. While we only discuss
supersymmetry in this lecture, it is likely that nature has a surprise ready for
us; maybe none of the ideas discussed so far is right. Still we know that there
is something out there to be uncovered at TeV scale energies. For instance,
one can constrain the energy scale of “new physics” once mH is known, by
requiring that the fine-tuning at the new physics scale Λ is no worse than a
certain percentage. This constraint can be combined with other traditional
constraints based on triviality, vacuum stability and the electroweak precision
measurements and is shown in Figure 4.

2 Supersymmetric Lagrangian

We do not go into the full-fledged formalism of supersymmetric Lagrangians
in this lecture but rather confine ourselves to a practical introduction of how
to write down Lagrangians with explicitly broken supersymmetry which still
fulfill the motivation for supersymmetry discussed in the previous section.
One can find useful discussions as well as an extensive list of references in a
nice review by Steve Martin [10].

2.1 Supermultiplets

Supersymmetry is a symmetry between bosons and fermions, and hence nec-
essarily relates particles with different spins. All particles in supersymmetric
theories fall into supermultiplets, which have both bosonic and fermionic
components. There are two types of supermultiplets which appear in renor-
malizable field theories: chiral and vector supermultiplets.

Chiral supermultiplets are often denoted by the symbol φ, which can
be (for the purpose of this lecture) regarded as a short-handed notation
for the three fields: a complex scalar field A, a Weyl fermion 1−γ5

2
ψ = ψ,

and a non-dynamical (auxiliary) complex field F . Lagrangians for chiral
supermultiplets consist of two parts, Kähler potential and superpotential.
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Figure 4: The constraints on the mh – Λ plane, including triviality (dark
region at top) and vacuum stability (dark region at bottom). The hatched
regions marked “Electroweak” (if the operators are at the tree-level, with
or without non-perturbative enhancements) and the region bounded by the
dashed line (if the operators arise at one-loop level) are ruled out by precision
electroweak analyses. The darkly hatched region marked “1%” represents
tunings of greater than 1 part in 100; the “10%” region means greater than
1 part in 10. The empty region is consistent with all constraints and has less
than 1 part in 10 fine-tuning. See [9] for details.
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The Kähler potential is nothing but the kinetic terms for the fields, usually
written with a short-hand notation

∫

d4θφ∗φ, which can be explicitly written
down as

L ⊃
∫

d4θφ∗
iφ

i = ∂µA
∗
i ∂

µAi + ψ̄iiγ
µ∂µψ

i + F ∗
i F

i. (2.1)

Note that the field F does not have derivatives in the Lagrangian and hence
is not a propagating field. One can solve for F i explicitly and eliminate it
from the Lagrangian completely.

The superpotential is defined by a holomorphic function W (φ) of the chi-
ral supermultiplets φi. A short-hand notation

∫

d2θW (φ) gives the following
terms in the Lagrangian,

L ⊃ −
∫

d2θW (φ) = −1

2

∂2W

∂φi∂φj

∣

∣

∣

∣

∣

φi=Ai

ψiψj +
∂W

∂φi

∣

∣

∣

∣

∣

φi=Ai

F i. (2.2)

The first term describes Yukawa couplings between fermionic and bosonic
components of the chiral supermultiplets. Using both Eqs. (2.1) and (2.2),
we can solve for F and find

F ∗
i = − ∂W

∂φi

∣

∣

∣

∣

∣

φi=Ai

. (2.3)

Substituting it back to the Lagrangian, we eliminate F and instead find a
potential term

L ⊃ −VF = −
∣

∣

∣

∣

∣

∂W

∂φi

∣

∣

∣

∣

∣

2

φi=Ai

. (2.4)

Vector supermultiplets Wα (α is a spinor index, but never mind), which
are supersymmetric generalization of the gauge fields, consist also of three
components, a Weyl fermion (gaugino) λ, a vector (gauge) field Aµ, and a
non-dynamical (auxiliary) real scalar field D, all in the adjoint representation
of the gauge group with the index a. A short-hand notation of their kinetic
terms is

L ⊃
∫

d2θW a
αW

αa = −1

4
Fµν + λ̄ai6Dλa +

1

2
DaDa. (2.5)

Note that the field D does not have derivatives in the Lagrangian and hence
is not a propagating field. One can solve for Da explicitly and eliminate it
from the Lagrangian completely.

Since the vector supermultiplets contain gauge fields, chiral supermulti-
plets which transform non-trivially under the gauge group should also couple
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to the vector multiplets to make the Lagrangian gauge invariant. This re-
quires the modification of the Kähler potential

∫

d4θφ∗φ to
∫

d4θφ†e2gV φ,
where V is another short-hand notation of the vector multiplet. Then the
kinetic terms in Eq. (2.1) are then modified to

L ⊃
∫

d4θφ†
ie

2gV φi

= DµA
†
iD

µAi + ψ̄iiγ
µDµψ

i + F †
i F

i −
√

2g(A†T aλaψ) − gA†T aDaA.

(2.6)

Using Eqs. (2.5,2.6), one can solve for Da and eliminate it from the La-
grangian, finding a potential term

L ⊃ −VD = −g
2

2
(A†T aA)2 (2.7)

General supersymmetric Lagrangians are given by Eqs. (2.4,2.6,2.7).3

Even though we do not go into formal discussions of supersymmetric field
theories, one important theorem must be quoted: the non-renormalization
theorem of the superpotential. Under the renormalization of the theories, the
superpotential does not receive renormalization at all orders in perturbation
theory.4 We will come back to the virtues of this theorem later on.

Finally, let us study a very simple example of superpotential to gain some
intuition. Consider two chiral supermultiplets φ1 and φ2, with a superpoten-
tial

W = mφ1φ2. (2.8)

Following the above prescription, the fermionic components have the La-
grangian

L ⊃ −1

2

∂2W

∂φi∂φj
ψiψj = −mψ1ψ2, (2.9)

while the scalar potential term Eq. (2.4) gives

L ⊃ −
∣

∣

∣

∣

∣

∂W

∂φi

∣

∣

∣

∣

∣

2

φi=Ai

= −m2|A1|2 −m2|A2|2. (2.10)

3We dropped one possible term, called the Fayet–Iliopoulos D-term, possible for vector
supermultiplets of Abelian gauge groups. Such terms can have important effects phe-
nomenologically [11, 12].

4There are non-perturbative corrections to the superpotential, however. See, e.g., a
review [13].
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Obviously, the terms Eqs. (2.9,2.10) are mass terms for the fermionic (Dirac
fermion) and scalar components (two complex scalars) of the chiral supermul-
tiplets, with the same mass m. In general, fermionic and bosonic components
in the same supermultiplets are degenerate in supersymmetric theories.

3 Softly Broken Supersymmetry

We’ve discussed supersymmetric Lagrangians in the previous section, which
always give degenerate bosons and fermions. In the real world, we do not
see such degenerate particles with opposite statistics. Therefore supersym-
metry must be broken. We will come back later to briefly discuss various
mechanisms which break supersymmetry spontaneously in manifestly super-
symmetric theories. In the low-energy effective theories, however, we can
just add terms to supersymmetric Lagrangians which break supersymmetry
explicitly. The important constraint is that such explicit breaking terms
should not spoil the motivation discussed earlier, namely to keep the Higgs
mass-squared only logarithmically divergent. Such explicit breaking terms of
supersymmetry are called “soft” breakings.

The possible soft breaking terms have been classified [14]. In a theory
with a renormalizable superpotential

W =
1

2
µijφ

iφj +
1

6
λijkφ

iφjφk, (3.1)

the possible soft supersymmetry breaking terms have the following forms:

m2i
j A

∗
iA

j, Mλλ,
1

2
bijµijA

iAj,
1

6
aijkλijkA

iAjAk. (3.2)

The first one is the masses for scalar components in the chiral supermulti-
plets, which remove degeneracy between the scalar and spinor components.
The next one is the masses for gauginos which remove degeneracy between
gauginos and gauge bosons. Finally the last two ones are usually called bilin-
ear and trilinear soft breaking terms with parameters bij and aijk with mass
dimension one.

In principle, any terms with couplings with positive mass dimensions
are candidates for soft supersymmetry breaking terms [15]. Possibilities in
theories without gauge singlets are

ψiψj, A∗
iA

jAk, ψiλa (3.3)
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Obviously, the first term is possible only in theories with multiplets with
vector-like gauge quantum numbers, and the last term only in theories with
chiral supermultiplets in the adjoint representation. In the presence of gauge
singlet chiral supermultiplets, however, such terms cause power divergences
and instabilities, and hence are not soft in general. On the other hand, the
Minimal Supersymmetric Standard Model, for instance, does not contain any
gauge singlet chiral supermultiplets and hence does admit first two possible
terms in Eq. (3.3). There has been some revived interest in these general
soft terms [16]. We will not consider these additional terms in the rest of
the discussions. It is also useful to know that terms in Eq. (3.2) can also
induce power divergences in the presence of light gauge singlets and heavy
multiplets [17].

It is instructive to carry out some explicit calculations of Higgs boson self-
energy in supersymmetric theories with explicit soft supersymmetry breaking
terms. Let us consider the coupling of the Higgs doublet chiral supermultiplet
H to left-handed Q and right-handed T chiral supermultiplets,5 given by the
superpotential term

W = htQTHu. (3.4)

This superpotential term gives rise to terms in the Lagrangian6

L ⊃ −htQTHu−h2
t |Q̃|2|Hu|2−h2

t |T̃ |2|Hu|2−m2
Q|Q̃|2−m2

T |T̃ |2−htAtQ̃T̃Hu,
(3.5)

where m2
Q, m2

T , and At are soft parameters. Note that the fields Q, T are

spinor and Q̃, T̃ , Hu are scalar components of the chiral supermultiplets (an
unfortunate but common notation in the literature). This explicit Lagrangian
allows us to easily work out the one-loop self-energy diagrams for the Higgs
doublet Hu, after shifting the field Hu by its vacuum expectation value (this
also generates mass terms for the top quark and the scalars which have to
be consistently included). The diagram with top quark loop from the first
term in Eq. (3.5) is quadratically divergent (negative). The contractions of
Q̃ or T̃ in the next two terms also generate (positive) contributions to the
Higgs self-energy. In the absence of soft parameters m2

Q = m2
T = 0, these

5As will be explained in the next section, the right-handed spinors all need to be
charged-conjugated to the left-handed ones in order to be part of the chiral supermultiplets.
Therefore the chiral supermultiplet T actually contains the left-handed Weyl spinor (tR)c.
The Higgs multiplet here will be denoted Hu in later sections.

6We dropped terms which do not contribute to the Higgs boson self-energy at the
one-loop level.
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two contributions precisely cancel with each other, consistent with the non-
renormalization theorem which states that no mass terms (superpotential
terms) can be generated by renormalizations. However, the explicit breaking
terms m2

Q, m2
T make the cancellation inexact. With a simplifying assumption

m2
Q = m2

T = m̃2, we find

δm2
H = − 6h2

t

(4π)2
m̃2 log

Λ2

m̃2
. (3.6)

Here, Λ is the ultraviolet cutoff of the one-loop diagrams. Therefore, these
mass-squared parameters are indeed “soft” in the sense that they do not
produce power divergences. Similarly, the diagrams with two htAt couplings
with scalar top loop produce only a logarithmic divergent contribution.

4 The Minimal Supersymmetric Standard Model

Encouraged by the discussion in the previous section that the supersymmetry
can be explicitly broken while retaining the absence of power divergences,
we now try to promote the Standard Model to a supersymmetric theory.
The Minimal Supersymmetric Standard Model (MSSM) is a supersymmetric
version of the Standard Model with the minimal particle content.

4.1 Particle Content

The first task is to promote all fields in the Standard Model to appropriate
supermultiplets. This is obvious for the gauge bosons: they all become vector
multiplets. For the quarks and leptons, we normally have left-handed and
right-handed fields in the Standard Model. In order to promote them to
chiral supermultiplets, however, we need to make all fields left-handed Weyl
spinors. This can be done by charge-conjugating all right-handed fields.
Therefore, when we refer to supermultiplets of the right-handed down quark,
say, we are actually talking about chiral supermultiplets whose left-handed
spinor component is the left-handed anti-down quark field. As for the Higgs
boson, the field Eq. (1.1) in the Standard Model can be embedded into a
chiral supermultiplet Hu. It can couple to the up-type quarks and generate
their masses upon symmetry breaking. In order to generate down-type quark
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Table 3: The chiral supermultiplets in the Minimal Supersymmetric Standard
Model.. The numbers in the bold face refer to SU(3)C , SU(2)L representa-
tions. The superscripts are hypercharges.

L1(1, 2)−1/2 L2(1, 2)−1/2 L3(1, 2)−1/2

E1(1, 1)+1 E2(1, 1)+1 E3(1, 1)+1

Q1(3, 2)1/6 Q2(3, 2)1/6 Q3(3, 2)1/6

U1(3, 1)−2/3 U2(3, 1)−2/3 U3(3, 1)−2/3

D1(3, 1)+1/3 D2(3, 1)+1/3 D3(3, 1)+1/3

Hu(1, 2)+1/2

Hd(1, 2)−1/2

masses, however, we normally use

iσ2H
∗ =

(

H+

H0

)

=

(

H0∗

−H−

)

. (4.1)

Unfortunately, this trick does not work in a supersymmetric fashion because
the superpotential W must be a holomorphic function of the chiral super-
multiplets and one is not allowed to take a complex conjugation of this sort.
Therefore, we need to introduce another chiral supermultiplet Hd which has
the same gauge quantum numbers of iσ2H

∗ above.7

In all, the chiral supermultiplets in the Minimal Supersymmetric Stan-
dard Model are listed in Table 3.

The particles in the MSSM are referred to as follows.8 First of all, all
quarks, leptons are called just in the same way as in the Standard Model,
namely electron, electron-neutrino, muon, muon-neutrino, tau, tau-neutrino,
up, down, strange, charm, bottom, top. Their superpartners, which have
spin 0, are named with “s” at the beginning, which stand for “scalar.” They
are denoted by the same symbols as their fermionic counterpart with the
tilde. Therefore, the superpartner of the electron is called “selectron,” and
is written as ẽ. All these names are funny, but probably the worst one of

7Another reason to need both Hu and Hd chiral supermultiplets is to cancel the gauge
anomalies arising from their spinor components.

8When I first learned supersymmetry, I didn’t believe it at all. Doubling the degrees of
freedom looked too much to me, until I came up with my own argument at the beginning
of the lecture. The funny names for the particles were yet another reason not to believe in
it. It doesn’t sound scientific. Once supersymmetry will be discovered, we definitely need
better sounding names!
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all is the “sstrange” (s̃), which I cannot pronounce at all. Superpartners of
quarks are “squarks,” and those of leptons are “sleptons.” Sometimes all of
them are called together as “sfermions,” which does not make sense at all
because they are bosons. The Higgs doublets are denoted by capital H, but
as we will see later, their physical degrees of freedom are h0, H0, A0 and H±.
Their superpartners are called “higgsinos,” written as H̃0

u, H̃+
u , H̃−

d , H̃0
d . In

general, fermionic superpartners of bosons in the Standard Model have “ino”
at the end of the name. Spin 1/2 superpartners of the gauge bosons are
“gauginos” as mentioned in the previous section, and they exist for each
gauge group: gluino for gluon, wino for W , bino for U(1)Y gauge boson B.
As a result of the electroweak symmetry breaking, all neutral “inos”, namely
two neutral higgsinos, the neutral wino W̃ 3 and the bino B̃, mix with each
other to form four Majorana fermions. They are called “neutralinos” χ̃0

i for
i = 1, 2, 3, 4. Similarly, the charged higgsinos H̃+

u , H̃−
d , W̃−, W̃+ mix and

form two massive Dirac fermions “charginos” χ̃±
i for i = 1, 2. All particles

with tilde do not exist in the non-supersymmetric Standard Model. Once
we introduce R-parity in a later section, the particles with tilde have odd
R-parity.

4.2 Superpotential

The SU(3)C × SU(2)L × U(1)Y gauge invariance allows the following terms
in the superpotential

W = λij
uQiUjHu + λij

d QiDjHd + λij
e LiEjHd + µHuHd

+λ′ijku UiDjDk + λ′ijkd QiDjLk + λ′ijke LiEjLk + µ′
iLiHu. (4.2)

The first three terms correspond to the Yukawa couplings in the Standard
Model (with exactly the same number of parameters). The subscripts i, j, k
are generation indices. The parameter µ has mass dimension one and gives a
supersymmetric mass to both fermionic and bosonic components of the chiral
supermultiplets Hu and Hd. The terms in the second line of Eq. (4.2) are in
general problematic as they break the baryon (B) or lepton (L) numbers.

If the superpotential contains both B- and L-violating terms, such as
λ′112u U1D1D2 and λ′121d Q1D2L1, one can exchange D̃2 = s̃ to generate a four-
fermion operator

λ′112u λ′121d

m2
s̃

(uRdR)(Q1L1), (4.3)
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where the spinor indices are contracted in each parentheses and the color
indices by the epsilon tensor. Such an operator would contribute to the
proton decay process p → e+π0 at a rate of Γ ∼ λ′4m5

p/m
4
s̃, and hence the

partial lifetime of the order of

τp ∼ 6 × 10−13 sec
(

ms̃

1 TeV

)4 1

λ′4
. (4.4)

Recall that the experimental limit on the proton partial lifetime in this mode
is τp > 1.6 × 1033 years [18]. Unless the coupling constants are extremely
small, this is clearly a disaster.

4.3 R-parity

To avoid this problem of too-rapid proton decay, a common assumption is a
discrete symmetry called R-parity [19]. The Z2 discrete charge is given by

Rp = (−1)2s+3B+L (4.5)

where s is the spin of the particle. (Alternatively, one can impose matter
parity [20] (−1)3B+L, which is equivalent to the R-parity upon 2π spatial
rotation.) Under Rp, all standard model particles, namely quarks, leptons,
gauge bosons, and Higgs bosons, carry even parity, while their superpartners
are odd due to the (−1)2s factor. Once this discrete symmetry is imposed,
all terms in the second line of Eq. (4.2) will be forbidden, and we do not
generate a dangerous operator such as that in Eq. (4.3). Indeed, B- and
L-numbers are now accidental symmetries of the MSSM Lagrangian as a
consequence of the supersymmetry, gauge invariance, renormalizability and
R-parity conservation.

One immediate consequence of the conserved R-parity is that the lightest
particle with odd R-parity, i.e., the Lightest Supersymmetric Particle (LSP),
is stable. Another consequence is that one can produce (or annihilate) su-
perparticles only pairwise. These two points have important implications for
collider phenomenology and cosmology. Since the LSP is stable, its cosmo-
logical relic is a good (and arguably the best) candidate for the Cold Dark
Matter particles (see, e.g., a review [21] on this subject). If so, we do not
want it to be electrically charged and/or strongly interacting; otherwise we
should have detected it already. Then the LSP should be a superpartner of Z,
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γ, or neutral Higgs bosons or their linear combination (called neutralino).9

On the other hand, the superparticles can be produced only in pairs and
they decay eventually into the LSP, which escapes detection. This is why
the typical signature of supersymmetry at collider experiments is missing
energy/momentum.

The phenomenology of R-parity breaking models has been also studied.
If either B-violating or L-violating terms exist in Eq. (4.2), but not both,
they would not induce proton decay [24]. However they can still produce
n-n̄ oscillation and a plethora of flavor-changing phenomena. We refer to a
recent compilation of phenomenological constraints [25] for further details.

4.4 Soft Supersymmetry Breaking Terms

In addition to the interactions that arise from the superpotential Eq. (4.2), we
should add soft supersymmetry breaking terms to the Lagrangian as we have
not seen any of the superpartners of the Standard Model particles. Following
the general classifications in Eq. (3.2), and assuming R-parity conservation,
they are given by

Lsoft = L1 + L2, (4.6)

L1 = −m2ij
Q Q̃∗

i Q̃j −m2ij
U Ũ∗

i Ũj −m2ij
D D̃∗

i D̃j

−m2ij
L L̃∗

i L̃j −m2ij
E Ẽ∗

i Ẽj −m2
Hu

|Hu|2 −m2
Hd
|Hd|2, (4.7)

L2 = −Aij
u λ

ij
u Q̃iŨjHu − Aij

d λ
ij
d Q̃iD̃jHd − Aij

l λ
ij
e Q̃iŨjHd + BµHuHd + c.c.

(4.8)

The mass-squared parameters for scalar quarks (squarks) and scalar leptons
(sleptons) are all three-by-three hermitian matrices, while the trilinear cou-
plings Aij and the bilinear coupling B of mass dimension one are general
complex numbers.10

9A sneutrino can in principle be the LSP [12], but it cannot be the CDM to avoid
constraints from the direct detection experiment for the CDM particles [22]. It becomes
a viable candidate again if there is a large lepton number violation [23].

10It is unfortunate that the notation A is used both for the scalar components of chiral
supermultiplets and the trilinear couplings. Hopefully one can tell them apart from the
context.
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4.5 Higgs Sector

It is of considerable interest to look closely at the Higgs sector of the MSSM.
Following the general form of the supersymmetric Lagrangians Eqs. (2.4,2.6,2.7)
with the superpotential W = µHuHd in Eq. (4.2) as well as the soft param-
eters in Eq. (4.7), the potential for the Higgs bosons is given as

V =
g′2

2

(

H†
u

1

2
Hu +H†

d

−1

2
Hd

)2

+
g2

2

(

H†
u

~τ

2
Hu +H†

d

~τ

2
Hd

)2

+µ2(|Hu|2 + |Hd|2) +m2
Hu

|Hu|2 +m2
Hd
|Hd|2 − (BµHuHd + c.c.)(4.9)

It turns out that it is always possible to gauge-rotate the Higgs bosons such
that

〈Hu〉 =

(

0
vu

)

, 〈Hd〉 =

(

vd

0

)

, (4.10)

in the vacuum. Since only electrically neutral components have vacuum
expectation values, the vacuum necessarily conserves U(1)QED.11 Writing
the potential (4.9) down using the expectation values (4.10), we find

V =
g2

Z

8
(v2

u − v2
d)

2 + (vu vd)

(

µ2 +m2
Hu

−Bµ
−Bµ µ2 +m2

Hd

)(

vu

vd

)

, (4.11)

where g2
Z = g2 + g′2. In order for the Higgs bosons to acquire the vacuum

expectation values, the determinant of the mass matrix at the origin must
be negative,

det

(

µ2 +m2
Hu

−Bµ
−Bµ µ2 +m2

Hd

)

< 0. (4.12)

However, there is a danger that the direction vu = vd, which makes the
quartic term in the potential identically vanish, may be unbounded from
below. For this not to occur, we need

µ2 +m2
Hu

+ µ2 +m2
Hd

> 2µB. (4.13)

In order to reproduce the mass of the Z-boson correctly, we need

vu =
v√
2

sin β, vd =
v√
2

cos β, v = 250 GeV. (4.14)

11This is not necessarily true in general two-doublet Higgs Models. Consult a review
[26].
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The vacuum minimization conditions are given by ∂V/∂vu = ∂V/∂vd = 0
from the potential Eq. (4.11). Using Eq. (4.14), we obtain

µ2 = −m
2
Z

2
+
m2

Hd
−m2

Hu
tan2 β

tan2 β − 1
, (4.15)

and
Bµ = (2µ2 +m2

Hu
+m2

Hd
) sin β cos β. (4.16)

Because there are two Higgs doublets, each of which with four real scalar
fields, the number of degrees of freedom is eight before the symmetry break-
ing. However three of them are eaten by W+, W− and Z bosons, and we are
left with five physics scalar particles. There are two CP-even scalars h0, H0,
one CP-odd scalar A0, and two charged scalars H+ and H−. Their masses
can be worked out from the potential (4.11):

m2
A = 2µ2 +m2

Hu
+m2

Hd
, m2

H± = m2
W +m2

A, (4.17)

and

m2
h0 , m2

H0 =
1

2

(

m2
A +m2

Z ±
√

(m2
A +m2

Z)2 − 4m2
Zm

2
A cos2 2β

)

. (4.18)

A very interesting consequence of the formula Eq. (4.18) is that the lighter
CP-even Higgs mass m2

h0 is maximized when cos2 2β = 1: m2
h0 = (m2

A+m2
Z −

|m2
A − m2

Z |)/2. When mA < mZ , we obtain m2
h0 = m2

A < m2
Z , while when

mA > mZ , m2
h0 = m2

Z . Therefore in any case we find

mh0 ≤ mZ . (4.19)

This is an important prediction in the MSSM. The reason why the masses of
the Higgs boson are related to the gauge boson masses is that the Higgs quar-
tic couplings in Eq. (4.9) are all determined by the gauge couplings because
they originate from the elimination of the auxiliary D-fields in Eq. (2.6).

Unfortunately, the prediction Eq. (4.19) is modified at the one-loop level
[27], approximately as

∆(m2
h0) =

Nc

4π2
h4

tv
2 sin4 β log

(

mt̃1mt̃2

m2
t

)

. (4.20)

With the scalar top mass of up to 1 TeV, the lightest Higgs mass is pushed
up to about 130 GeV. (See also the latest analysis including the resummed
two-loop contribution [28].)
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The parameter space of the MSSM Higgs sector can be described by two
parameters. This is because the potential Eq. (4.11) has three independent
parameters, µ2 + m2

Hu
, µ2 + m2

Hd
, and Bµ, while one combination is fixed

by the Z-mass Eq. (4.12). It is customary to pick either (mA, tan β), or
(mh0, tan β) to present experimental constraints. The current experimental
constraint on this parameter space is shown in Fig. 5.12

The range of the Higgs mass predicted in the MSSM is not necessarily
an easy range for the LHC experiments, but three-years’ running at the
high luminosity is supposed to cover the entire MSSM parameter space, by
employing many different production/decay modes as seen in Fig. 6.

4.6 Neutralinos and Charginos

Once the electroweak symmetry is broken, and since supersymmetry is al-
ready explicitly broken in the MSSM, there is no quantum number which
can distinguish two neutral higgsino states H̃0

u, H̃0
d , and two neutral gaugino

states W̃ 3 (neutral wino) and B̃ (bino). They have a four-by-four Majorana
mass matrix

L ⊃ −1

2
(B̃ W̃ 3 H̃0

d H̃
0
u)

×











M1 0 −mZsW cβ mZsW sβ

0 M2 mZcW cβ −mZcW sβ

−mZsW cβ mZcW cβ 0 −µ
mZsWsβ −mZcWsβ −µ 0























B̃

W̃ 3

H̃0
d

H̃0
u













.

(4.21)

Here, sW = sin θW , cW = cos θW , sβ = sin β, and cβ = cos β. Once M1, M2,
µ exceed mZ , which is preferred given the current experimental limits, one
can regard components proportional to mZ as small perturbations. Then the
neutralinos are close to their weak eigenstates, bino, wino, and higgsinos. But
the higgsinos in this limit are mixed to form symmetric and anti-symmetric
linear combinations H̃0

S = (H̃0
d + H̃0

u)/
√

2 and H̃0
A = (H̃0

d − H̃0
u)/

√
2.

12The large tanβ region may appear completely excluded in the plot, but this is some-
what misleading; it is due to the parametrization (mh0 , tanβ) which squeezes the mh0

region close to the theoretical upper bound to a very thin one. In the (mA, tan β)
parametrization, one can see the allowed region much more clearly.
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MSSM Exclusions in the Max-mH Scenario
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Figure 5: Regions in the (mh0 , tanβ) plane excluded by the MSSM Higgs
boson searches at LEP-II [29].
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Figure 6: Expected coverage of the MSSM Higgs sector parameter space
by the ATLAS experiment at the LHC, after three years of high-luminosity
running.
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Similarly two positively charged inos: H̃+
u and W̃+, and two negatively

charged inos: H̃−
d and W̃− mix. The mass matrix is given by

L ⊃ −(W̃− H̃−
d )

(

M2

√
2mW sβ√

2mW cβ µ

)(

W̃+

H̃+
u

)

+ c.c. (4.22)

Again once M2, µ >∼ mW , the chargino states are close to the weak eigenstates
winos and higgsinos.

4.7 Squarks, Sleptons

The mass terms of squarks and sleptons are also modified after the elec-
troweak symmetry breaking. There are four different contributions. One is
the supersymmetric piece coming from the |∂W/∂φi|2 terms in Eq. (2.4) with
φi = Q,U,D, L, E. These terms add m2

f where mf is the mass of the quarks
and leptons from their Yukawa couplings to the Higgs boson. Next one is
combing from the |∂W/∂φi|2 terms in Eq. (2.4) with φi = Hu or Hd in the
superpotential Eq. (4.2). Because of the µ term,

∂W

∂H0
u

= −µH0
d + λij

u Q̃iŨj, (4.23)

∂W

∂H0
d

= −µH0
d + λij

d Q̃iD̃j + λij
e L̃iẼj. (4.24)

Taking the absolute square of these two expressions and picking the cross
terms together with 〈H0

d〉 = v cos β/
√

2, 〈H0
u〉 = v sin β/

√
2, we obtain mix-

ing between Q̃ and Ũ , Q̃ and D̃, and L̃ and Ẽ. Similarly, the vacuum
expectation values of the Higgs bosons in the trilinear couplings Eq. (4.8)
also generate similar mixing terms. Finally, the D-term potential after elim-
inating the auxiliary field D Eq. (2.7) also gives contributions to the scalar
masses m2

Z(I3 − Q sin2 θW ) cos 2β. Therefore, the mass matrix of stop, for
instance, is given by

L ⊃ −(t̃∗L t̃∗R)
(

m2
Q3

+m2
t +m2

Z(1
2
− 2

3
s2

W )c2β mt(At − µ cotβ)
mt(At − µ cotβ) m2

U3
+m2

t +m2
Z(−2

3
s2

W )c2β

)(

t̃L
t̃R

)

,

(4.25)

with c2β = cos 2β. Here, t̃L is the up component of Q̃3, and t̃R = T̃ ∗. For
first and second generation particles, the off-diagonal terms are negligible
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for most purposes. They may, however, be important when their loops in
flavor-changing processes are considered.

4.8 What We Gained in the MSSM

It is useful to review here what we have gained in the MSSM over what
we had in the Standard Model. The main advantage of the MSSM is of
course what motivated the supersymmetry to begin with: the absence of
the quadratic divergences as seen in Eq. (3.6). This fact allows us to apply
the MSSM down to distance scales much shorter than the electroweak scale,
and hence we can at least hope that many of the puzzles discussed at the
beginning of the lecture to be solved by physics at the short distance scales.

There are a few amusing and welcome by-products of supersymmetry
beyond this very motivation. First of all, the Higgs doublet in the Stan-
dard Model appears so unnatural partly because it is the only scalar field
introduced just for the sake of the electroweak symmetry breaking. In the
MSSM, however, there are so many scalar fields: 15 complex scalar fields
for each generation and two in each Higgs doublet. Therefore, the Higgs
bosons are just “one of them.” Then the question about the electroweak
symmetry breaking is addressed in a completely different fashion: why is it
only the Higgs bosons that condense? In fact, one can even partially answer
this question in the renormalization group analysis in the next sections where
“typically” (we will explain what we mean by this) it is only the Higgs bosons
which acquire negative mass squared (4.12) while the masses-squared of all
the other scalars “naturally” remain positive. Finally, the absolute upper
bound on the lightest CP-even Higgs boson is falsifiable by experiments.

However, life is not as good as we wish. We will see that there are very
stringent low-energy constraints on the MSSM in Section 6.

5 Renormalization Group Analyses

Once supersymmetry protects the Higgs self-energy against corrections from
the short distance scales, or equivalently, the high energy scales, it becomes
important to connect physics at the electroweak scale where we can do mea-
surements to the fundamental parameters defined at high energy scales. This
can be done by studying the renormalization-group evolution of parameters.
It also becomes a natural expectation that the supersymmetry breaking itself
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originates at some high energy scale. If this is the case, the soft supersym-
metry breaking parameters should also be studied using the renormalization-
group equations. We study the renormalization-group evolution of various
parameters in the softly-broken supersymmetric Lagrangian at the one-loop
level.13 If supersymmetry indeed turns out to be the choice of nature, the
renormalization-group analysis will be crucial in probing physics at high en-
ergy scales using the observables at the TeV-scale collider experiments [32].

5.1 Gauge Coupling Constants

The first parameters to be studied are naturally the coupling constants in
the Standard Model. The running of the gauge couplings constants are de-
scribed in term of the beta functions, and their one-loop solutions in non-
supersymmetric theories are given by

1

g2(µ)
=

1

g2(µ′)
+

b0
8π2

log
µ

µ′
, (5.1)

with

b0 =
11

3
C2(G) − 2

3
Sf − 1

3
Sb. (5.2)

This formula is for Weyl fermions f and complex scalars b. The group theory
factors are defined by

δadC2(G) = f abcf dbc (5.3)

δabSf,b = TrT aT b (5.4)

and C2(G) = Nc for SU(Nc) groups and Sf,b = 1/2 for their fundamental
representations.

In supersymmetric theories, there is always the gaugino multiplet in the
adjoint representation of the gauge group. It contributes to Eq. (5.2) with
Sf = C2(G), and therefore the total contribution of the vector supermultiplet
is 3C2(G). On the other hand, the chiral supermultiplets have a Weyl spinor
and a complex scalar, and the last two terms in Eq. (5.2) can always combined
since Sf = Sb. Therefore, the beta function coefficients simplify to

b0 = 3C2(G) − Sf . (5.5)

13Recently, there have been developments in obtaining and understanding all-order beta
functions for gauge coupling constants [30] and soft parameters [31].
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Figure 7: Running of gauge coupling constants in the Standard Model and
in the MSSM.

Given the beta functions, it is easy to work out how the gauge coupling
constants measured accurately at LEP/SLC evolve to higher energies.

One interesting possibility is that the gauge groups in the Standard Model
SU(3)C × SU(2)L × U(1)Y may be embedded into a simple group, such as
SU(5) or SO(10), at some high energy scale, called “grand unification.”
The gauge coupling constants at µ ∼ mZ are approximately α−1 = 129,
sin2 θW ' 0.232, and α−1

s = 0.119. In the SU(5) normalization, the U(1)
coupling constant is given by α1 = 5

3
α′ = 5

3
α/ cos2 θW . It turns out that

the gauge coupling constants become equal at µ ' 2 × 1016 GeV given the
MSSM particle content (Fig. 7). On the other hand, the three gauge cou-
pling constants miss each other quite badly with the non-supersymmetric
Standard Model particle content. This observation suggests the possibility
of supersymmetric grand unification.

5.2 Yukawa Coupling Constants

Since first- and second-generation Yukawa couplings are so small, let us ignore
them and concentrate on the third-generation ones. Their renormalization-
group equations are given as

µ
dht

dµ
=

ht

16π2

[

6h2
t + h2

b −
16

3
g2
3 − 3g2

2 −
13

15
g2
1

]

, (5.6)

µ
dhb

dµ
=

hb

16π2

[

6h2
b + h2

t + h2
τ −

16

3
g2
3 − 3g2

2 −
7

15
g2
1

]

, (5.7)
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[34].

µ
dhτ

dµ
=

hτ

16π2

[

4h2
τ + 3h2

b − 3g2
2 −

9

5
g2
1

]

. (5.8)

The important aspect of these equations is that the gauge coupling con-
stants push down the Yukawa coupling constants at higher energies, while
the Yukawa couplings push them up. This interplay, together with a large
top Yukawa coupling, allows the possibility that the Yukawa couplings may
also unify at the same energy scale where the gauge coupling constants ap-
pear to unify (Fig. 8). There are two regions of tan β which lead to Yukawa
unification: tan β ∼ 2 and tan β ∼ 60. The first range is essentially excluded
by the negative result in the Higgs boson search at LEP-II. It turned out that
the actual situation is much more relaxed than what this plot suggests. This
is because there is a significant correction to mb at tan β >∼ 10 when the su-
perparticles are integrated out [33]. Therefore the mb-mτ Yukawa unification
may work for a larger range of parameter space tanβ >∼ 10.
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5.3 Soft Parameters

Since we do not know any of the soft parameters at this point, we cannot use
the renormalization-group equations to probe physics at high energy scales.
On the other hand, we can use the renormalization-group equations from
boundary conditions at high energy scales suggested by models to obtain
useful information on the “typical” superparticle mass spectrum.

First of all, the gaugino mass parameters have very simple behavior that

µ
d

dµ

Mi

g2
i

= 0. (5.9)

Therefore, the ratios Mi/g
2
i are constants at all energies. If the grand uni-

fication is true, both the gauge coupling constants and the gaugino mass
parameters must unify at the GUT-scale and hence the ratios are all the
same at the GUT-scale. Since the ratios do not run, the ratios are all the
same at any energy scales, and hence the low-energy gaugino mass ratios are
predicted to be

M1 : M2 : M3 = g2
1 : g2

2 : g2
3 ∼ 1 : 2 : 7 (5.10)

at the TeV scale. We see the tendency that the colored particle (gluino in
this case) is much heavier than uncolored particle (wino and bino in this
case). This turns out to be a relatively model-independent conclusion.

The running of scalar masses is given by simple equations when all Yukawa
couplings other than that of the top quark are neglected. We find

16π2µ
d

dµ
m2

Hu
= 3Xt − 6g2

2M
2
2 − 6

5
g2
1M

2
1 , (5.11)

16π2µ
d

dµ
m2

Hd
= −6g2

2M
2
2 − 6

5
g2
1M

2
1 , (5.12)

16π2µ
d

dµ
m2

Q3
= Xt −

32

3
g2
3M

2
3 − 6g2

2M
2
2 − 2

15
g2
1M

2
1 , (5.13)

16π2µ
d

dµ
m2

U3
= 2Xt −

32

3
g2
3M

2
3 − 32

15
g2
1M

2
1 . (5.14)

Here, Xt = 2h2
t (m

2
Hu

+ m2
Q3

+ m2
U3

) and the trilinear couplings are also ne-
glected. Even within the simplifying assumptions, one learns interesting
lessons. First of all, the gauge interactions push the scalar masses up at
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lower energies due to the gaugino mass squared contributions. Colored par-
ticles are pushed up even more than uncolored ones, and the right-handed
sleptons would be the least pushed up. On the other hand, Yukawa cou-
plings push the scalar masses down at lower energies. The coefficients of Xt

in Eqs. (5.11, 5.13, 5.14) are simply the multiplicity factors which correspond
to 3 of SU(3)C , 2 of SU(2)Y and 1 of U(1)Y . It is extremely interesting that
m2

Hu
is pushed down the most because of the factor of three as well as is

pushed up the least because of the absence of the gluino mass contribution.
Therefore, the fact that the Higgs mass squared is negative at the electroweak
scale may well be just a simple consequence of the renormalization-group
equations! Since the Higgs boson is just “one of them” in the MSSM, the
renormalization-group equations provide a very compelling reason why it
is only the Higgs boson whose mass-squared goes negative and condenses.
One can view this as an explanation for the electroweak symmetry breaking:
“radiative breaking” of electroweak symmetry.

6 Low-Energy Constraints

Despite the fact that we are interested in superparticles in the 100–1000 GeV
range, which we are just starting to be explored in collider searches, there
are many amazingly stringent low-energy constraints on superparticles.

6.1 Mass Insertion Techinique

To study the constraints from the rare processes on supersymmetry, the so-
called mass insertion technique is very useful. To introduce the technique,
let us pose a different question first, and then come back to supersymmetry.

We have learned that the atmospheric neutrinos seem to oscillate. The
mode is most likely νµ → ντ . What it means is that they have finite masses,
and their mass eigenstates are different from the interaction eigenstates. If so,
in the basis where the charged lepton masses are diagonal, the mass matrix
for the neutrinos is not diagonal. Keeping only ντ and νµ, we assume for
the sake of the discussion that the neutrinos are Dirac neutrinos, and take
sin2 2θ = 1, m2

ν3
= 3 × 10−3 eV2 � m2

ν2
≈ 0. Then the mass term in the

Lagrangian is approximately

L = −1

2
mν3

(

ν̄µ ν̄τ

)

(

1 1
1 1

)(

νµ

ντ

)

. (6.1)
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Figure 9: The Feynman diagram for τ → µγ from the neutrino mass inser-
tion.

Given the observation that νµ can oscillate to ντ , there is violation of
muon number and tau number. A natural question to ask is if there is also
a corresponding process in the charged leptons, such as τ → µγ. Let us
estimate this rate without actually calculating the diagram.

The effective operator responsible for such a decay must be

τRσ
µνµLFµν (6.2)

or with the opposite chirality combination. The diagram is shown in Figure 9.
One unusual feature of this diagram is that the flow of chirality is shown
explicitly. Another point is that the masses are treated as “insertions”, i.e.,
as “interactions” represented by crosses. Because the chirality of τ is τR,
while it needs to convert to neutrinos to pick up flavor violation, it has to
interact with the W -boson, which requires τL. Therefore, there must be the
insertion of mτ to flip the chirality from τR to τL. There is no need for a
mµ insertion because µL can interact with the W -boson. The off-diagonal
element of Eq. (6.1) changes flavor, but also the chirality because it is a
mass term. In order to keep neutrino left-handed so that it can interact
with the W -boson, we need to insert the mass term twice. This way, one
can determine the minimum number of mass insertions very simply. The
coefficient of the operator Eq. (6.2) then should approximately be

e
g2

16π2

mν2

3

mτ

m4
W

. (6.3)

Given this estimate, the branching fraction for τ → µγ would be

Γ(τ → µγ)

Γ(τ → µντ ν̄µ)
∼ 3

2π2
e2
m4

ν3

m4
W

∼ 10−51. (6.4)

This predicted width is certainly experimentally allowed and unlikely to be
seen any time soon.
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Figure 10: A Feynman diagram which gives rise to ∆mK and εK.

6.2 Neutral Kaon System

One of the most stringent constraints comes from the K0–K̄0 mixing param-
eters ∆mK and εK. The main reason for the stringent constraints is that the
scalar masses-squared in the MSSM Lagrangian Eq. (4.7) can violate flavor,
i.e., the scalar masses-squared matrices are not necessarily diagonal in the
basis where the corresponding quark mass matrices are diagonal.

To simplify the discussion, let us concentrate only on the first and the
second generations (ignore the third). We also go to the basis where the
down-type Yukawa matrix λij

d is diagonal, such that

λij
d vd =

(

md 0
0 ms

)

. (6.5)

Therefore the states K0 = (ds̄), K̄0 = (sd̄) are well-defined in this basis. In
the same basis, however, the squark masses-squared can have off-diagonal
elements in general,

m2ij
Q =

(

m2

d̃L

m2
Q,12

m2∗
Q,12 m2

s̃L

)

, m2ij
D =

(

m2

d̃R

m2
D,12

m2∗
D,12 m2

s̃R

)

. (6.6)

Since their off-diagonal elements will be required to be small (as we will see
later), it is convenient to treat them as small perturbations. We insert the
off-diagonal elements as two-point Feynman vertices which change the squark
flavor d̃L,R ↔ s̃L,R in the diagrams. To simplify the discussion further, we
assume that all squarks and gluinos are comparable in their masses m̃. Then
the relevant quantities are given in terms of the ratio (δd

12)LL ≡ m2
Q,12/m̃

2
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(and similarly (δd
12)RR = m2

D,12/m̃
2), as depicted in Fig. 10. The operator

from this Feynman diagram is estimated approximately as

0.005α2
s

(δd
12)

2
LL

m̃2
(d̄Lγ

µsL)(d̄LγµsL). (6.7)

This operator is further sandwiched between K0 and K̄0 states, and we find

∆m2
K ∼ 0.005f 2

Km
2
Kα

2
s(δ

d
12)

2
LL

1

m̃2

= 1.2 × 10−12 GeV2

(

fK

160 MeV

)2 (
αs

0.1

)2

(δd
12)

2
LL < 3.5 × 10−15 GeV2,

(6.8)

where the last inequality is the phenomenological constraint in the absence
of accidental cancellations. This requires

(δd
12)LL

<∼ 0.05
(

m̃

500 GeV

)

(6.9)

and hence the off-diagonal element m2
Q,12 must be small. It turns out that the

product (δd
12)LL(δd

12)RR is more stringently constrained, especially its imagi-
nary part from εK. Much more careful and detailed analysis than the above
order-of-magnitude estimate gives [35]

Re
[

(δd
12)LL(δd

12)RR

]

< (1 × 10−3)2, Im
[

(δd
12)LL(δd

12)RR

]

< (1 × 10−4)2.

(6.10)
This and other similar limits are summarized in Table 4.

6.3 µ → eγ

Another important example is µ → eγ. The digaram is given in Figure 11.
Using the mass insertion, the effective operator is given approximately by

∼ e
g2

16π2
mµ

m2
12

m4
SUSY

µ̄Rσ
µνeLFµν (6.11)

where we took mSUSY ≡ mW̃ ∼ ml̃. A more detailed calculation gives the
constraint [36]

(δl
12)LL < 7.7 × 10−3

(

mSUSY

100 GeV

)2

. (6.12)

This is also a very stringent constraint on the flavor mixing in the scalar
masses-squared matrix.
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Table 4: Limits on Re (δij)AB (δij)CD, with A,B,C,D = (L,R), for an av-
erage squark mass mq̃ = 500 GeV and for different values of x = m2

g̃/m
2
q̃ .

Taken from [35].

NO QCD, VIA LO, VIA LO, Lattice Bi NLO, Lattice Bi

x
√

|<(δd
12)

2
LL|

0.3 1.4 × 10−2 1.6 × 10−2 2.2 × 10−2 2.2 × 10−2

1.0 3.0 × 10−2 3.4 × 10−2 4.6 × 10−2 4.6 × 10−2

4.0 7.0 × 10−2 8.0 × 10−2 1.1 × 10−1 1.1 × 10−1

x
√

|<(δd
12)

2
LR| (|(δd

12)LR| � |(δd
12)RL|)

0.3 3.1 × 10−3 2.3 × 10−3 2.8 × 10−3 2.6 × 10−3

1.0 3.4 × 10−3 2.5 × 10−3 3.1 × 10−3 2.8 × 10−3

4.0 4.9 × 10−3 3.5 × 10−3 4.4 × 10−3 3.9 × 10−3

x
√

|<(δd
12)

2
LR| ((δd

12)LR = (δd
12)RL)

0.3 5.5 × 10−3 3.3 × 10−3 2.2 × 10−3 1.7 × 10−3

1.0 3.1 × 10−3 2.7 × 10−3 5.5 × 10−3 2.8 × 10−2

4.0 3.7 × 10−3 2.8 × 10−3 3.8 × 10−3 3.5 × 10−3

x
√

|<(δd
12)LL(δd

12)RR|
0.3 1.8 × 10−3 1.0 × 10−3 1.0 × 10−3 8.6 × 10−4

1.0 2.0 × 10−3 1.1 × 10−3 1.2 × 10−3 9.6 × 10−4

4.0 2.8 × 10−3 1.6 × 10−3 1.6 × 10−3 1.3 × 10−3

µ– e–

W–

γ

∼

µ∼
e∼m2

12
e∼

Figure 11: The Feynman diagram for µ→ eγ from the slepton loop.
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6.4 What do we do?

There are various ways to avoid such low-energy constraints on supersymme-
try. The first one is called “universality” of soft parameters [37]. It is simply
assumed that the scalar masses-squared matrices are proportional to identity
matrices, i.e., m2

Q, m
2
U , m

2
D ∝ 1. Then no matter what rotation is made in

order to go to the basis where the quark masses are diagonal, the identity ma-
trices stay the same, and hence the off-diagonal elements are never produced.
There have been many proposals to generate universal scalar masses either
by the mediation mechanism of the supersymmetry breaking such as gauge
mediated (see reviews [38]), anomaly mediated [39], or gaugino mediated [40]
supersymmetry breaking, or by non-Abelian flavor symmetries [41].

The second possibility is called “alignment,” where certain flavor symme-
tries should be responsible for “aligning” the quark and squark mass matrices
such that the squark masses are almost diagonal in the same basis where the
down-quark masses are diagonal [42]. Because of the CKM matrix it is im-
possible to do this both for down-quark and up-quark masses. Since the
phenomenological constraints in the up-quark sector are much weaker than
in the down-quark sector, this choice would alleviate many of the low-energy
constraints (except for flavor-diagonal CP-violation such as EDMs).

Finally there is a possibility called “decoupling,” which assumes first- and
second-generation superpartners much heavier than TeV while keeping the
third-generation superpartners as well as gauginos in the 100 GeV range to
keep the Higgs self-energy small enough [43]. Even though this idea suffers
from a fine-tuning problem in general [44], many models had been constructed
to achieve such a split mass spectrum recently [45].

In short, the low-energy constraints are indeed very stringent, but there
are many ideas to avoid such constraints naturally within certain model
frameworks. Especially given the fact that we still do not know any of the
superparticle masses experimentally, one cannot make the discussions more
clear-cut at this stage. On the other hand, important low-energy effects
of supersymmetry are still being discovered in the literature, such as muon
g−2 [46, 47], and direct CP-violation [48, 49, 50, 51, 52]. There may be even
more possible low-energy manifestations of supersymmetry which have been
missed so far.
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7 Models of Supersymmetry Breaking

One of the most important questions in supersymmetry phenomenology is
how supersymmetry is broken and how the particles in the MSSM learn the
effect of supersymmetry breaking. The first one is the issue of dynamical
supersymmetry breaking, and the second one is the issue of the “mediation”
mechanism. Especially in the discussions about flavor physics in supersym-
metry, the issue of supersymmetry breaking is unavoidable. Depending on
what mechanism you employ, you arrive at completely different results. This
is actually a good news. If supersymmetry is found, studying its flavor signa-
tures would tell us a great deal about the origin of supersymmetry breaking
as well as the origin of flavor.

7.1 Minimal Supergravity

One of the earliest ideas to break supersymmetry was due to [53]. To a
supersymmetric Lagrangian, these authors added universal (the same) mass
to all scalars in chiral multiplets in the theory. They made this assumption
to avoid the constraints from flavor-changing processes as those discussed
in the previous section. This assumption was later elevated to the so-called
“minimal supergravity” scenario [54] where one assumes (see Eqs. (4.7,4.8))

(m2
Q)ij = (m2

U)ij = (m2
D)ij = (m2

L)ij = (m2
E)ij = m2

0δij (7.1)

m2
Hu

= m2
Hd

= m2
0 (7.2)

(Au)ij = (Ad)ij = (Ae)ij = A0 (7.3)

M1 = M2 = M3 = M1/2 (7.4)

all at the “GUT-scale” ' 2×1016 GeV.14 The trilinear couplings are universal
in the sense that (Au)ij(λu)ij = A0(λu)ij etc. There are only five additional
parameters in this framework at the GUT-scale:

(m0, A0,M1/2, µ, B). (7.5)

By running these parameters down to the electroweak scale, and in par-
ticular calculating m2

Hu
and m2

Hd
, we can calculate mZ and tan β using

14The papers [54] actually did not distinguish the “GUT-scale” from the reduced Planck
scale 2×1018 GeV. This distinction became an issue only after the LEP/SLC measurements
of the gauge coupling constants in 90’s.
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Eqs. (4.15,4.16). In other words, we can eliminate µ and B in favor of mZ

and tan β, up to a sign ambiguity in µ in Eq. (4.15). Therefore the commonly
accepted parameter set is

(m0,M1/2, A0, tan β, sign(µ)). (7.6)

The relation among soft parameters above is definitely a strong assumption,
but it makes the number of parameters small and tractable. Indeed, most
of the papers on supersymmetry until the mid-90’s, both theoretical and ex-
perimental, assumed this scenario. It is remarkable, however, that such a
simple (and strong) assumption leads to viable phenomenology. The flavor-
changing constraints are mostly avoided (except b → sγ as we will discuss
later). The lightest supersymmetric particle is almost always a neutralino
(mostly a bino) which turns out to have cosmologically interesting abun-
dance. Radiative electroweak symmetry breaking works beautifully within
this framework. Phenomenology had been worked out in great detail and
clearly this framework is viable, even though the direct search limits from
LEP, Tevatron, indirect limits from b→ sγ, and the limit on the MSSM Higgs
boson from LEP already constrain the model. I would say that roughly “a
little more than a half” of the parameter space has been excluded already.

A natural question is if this scenario is “reasonable.” The answer is yes
and no. The reason why this is called the supergravity scenario is because it
can certainly be realized in the N = 1 supergravity theory. In the so-called
Polonyi-type models, one can easily break supersymmetry within supergrav-
ity by assuming an explicit mass scale in the superpotential together with
a fine-tuning to keep the cosmological constant vanishing. We will discuss
them in the Gravity Mediation section. The problem is that there is no
principle to guarantee the universality of scalar masses, gaugino masses, and
trilinear couplings. This is achieved basically by fine-tuning of parameters.
We will make this point more explicit later. The amount of flavor signature
one obtains therefore depends on how much one sticks to the universality.

It is useful to ask how a small modification of the minimal supergravity,
even flavor-blind ones, affects phenomenology. For instance, I mentioned
that the minimal supergravity leads to bino-like LSP. Consider one additional
parameter, namely the Fayet–Iliopoulos D-term for U(1)Y , which changes all
of the scalar masses according to their hypercharges:

m2
i → m2

i + YiDY . (7.7)
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In this “Less Minimal” model, there are portions of the parameter space
where a higgsino-like neutralino or sneutrino becomes the LSP, which changes
the phenomenology drastically [12]. The fact that such a small modification
(one additional parameter) can lead to a big change in phenomenology tells
us that simplifying assumptions such as minimal supergravity must be used
with caution.

7.2 Dynamical Supersymmetry Breaking

Classic examples of supersymmetry breaking were based either on an O’Rai-
feartaigh-type superpotential or a Fayet–Iliopoulos D-term (see, e.g., [55]).
Both of them had explicit mass scales built into the Lagrangian by hand,
and do not explain the hierarchy why the supersymmetry breaking scale
is much lower than the Planck scale. The non-renormalization theorem in
supersymmetric field theories makes it impossible to break supersymmetry
at higher orders in perturbation theory if it is not broken already at the tree-
level. This point, however, makes it hopeful that supersymmetry is broken
only non-perturbatively by dimensional transmutation so that the scale of
supersymmetry breaking is expontentially suppressed relative to the Planck
scale (see, e.g., [56]).

Work on the problem of supersymmetry breaking has made dramatic
progress in the past few years thanks to works on the dynamics of supersym-
metric gauge theories by Seiberg [13]. We will briefly review the progress
below.

The original idea by Witten [5] was that dynamical supersymmetry break-
ing is ideal to explain the hierarchy. Because of the non-renormalization the-
orem, if supersymmetry is unbroken at the tree-level, it remains unbroken at
all orders in perturbation theory. However, there may be non-perturbative
effects suppressed by e−8π2/g2

that could break supersymmetry. Then the
energy scale of the supersymmetry breaking can be naturally suppressed ex-
ponentially compared to the energy scale of the fundamental theory (string?).
Even though this idea attracted a lot of interest,15 the model building was
hindered by the lack of understanding in dynamics of supersymmetric gauge
theories. Only relatively few models were convincingly shown to break su-
persymmetry dynamically, such as the SU(5) model with two pairs [57] of
5∗ + 10 and the 3-2 model [58]. After Seiberg’s works, however, there has

15I didn’t live through this era, so this is just a guess.
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been an explosion in the number of models which break supersymmetry dy-
namically (see a review [59] and references therein). For instance, some of
the models which were claimed to break supersymmetry dynamically, such
as SU(5) with one pair [60] of 5∗ +10 or SO(10) with one spinor [61] 16, are
actually strongly coupled and could not be analyzed reliably (called “non-
calculable”), but new techniques allowed us to analyze these strongly cou-
pled models reliably [62]. Unexpected vector-like models were also found [63]
which proved to be useful for model building.

In many of these models, direct renormalizable interactions between the
sector that breaks supersymmetry dynamically and the supersymmetric stan-
dard model are not possible simply due to gauge invariance. For instance,
the lowest dimension operator in the SO(10) model with one spinor 16 is
the gauge kinetic term (dimension 4) and a superpotential 164 (dimension
5). On the other hand, the lowest dimension operator in the supersymmetric
standard model is the µ-term HuHd (dimension 3). Therefore, the lowest
dimension operators that couple these two sectors are of dimension 7, and
the couplings are necessarily suppressed by at least three powers of the en-
ergy scale, possibly the Planck-scale. This simple observation makes the
existence of a sector with only Planck-scale-suppressed coupling to us not so
surprising. Whether it leads to a phenomenologically acceptable spectrum
of superparticles is an issue of the “mediation.”

7.3 Mediation Mechanisms

There has also been an explosion in the number of mediation mechanisms
proposed in the literature. The oldest mechanism is that in supergravity
theories where interactions suppressed by the Planck scale are responsible
for communicating the effects of supersymmetry breaking to the particles in
the MSSM. For instance, see a review [55]. Even though gravity itself may
not be the only effect for the mediation, and there could be many operators
suppressed by the Planck-scale responsible for the mediation, nonetheless this
mechanism was sometimes called “gravity-mediation.” The good thing about
this mechanism is that this is almost always there. However we basically do
not have any control over the Planck-scale physics and the resulting scalar
masses-squared are in general highly non-universal. In this situation, the
best idea is probably to constrain the scalar masses-squared matrix to be
proportional to the identity matrix by non-Abelian flavor symmetries [41].
Models of this type have been constructed where the breaking patterns of
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the flavor symmetry naturally explain the hierarchical quark and lepton mass
matrices, while protecting the squark masses-squared matrices from deviating
too far from the identity matrices.

7.3.1 Gravitiy Mediation

A supergravity theory is characterized by two quantities. One is the Kähler
density of mass dimension two and the other is the superpotential of mass
dimension three, similar to the case of global supersymmetry. The Kähler
density K̃ is a real function of both chiral superfields φi and their complex
conjugates φ∗

i , while the superpotential W is a holomorphic function of
the chiral superfields φi. For the discussions below, we use the system of
units where the reduced Planck scale, MP l/

√
8π = 1. For a given Kähler

density, which is the fundamental input in the Lagrangian, one defines a
derived quantity, the Kähler potential, i K ≡ −3 ln(1− K̃). Then the scalar
potential is given as

V = eK
[

(KiW ∗ +W ∗i)(K−1)j
i (KjW +Wj) − 3|W |2

]

, (7.8)

where Wj = ∂W/∂φj, W ∗i = (Wi)
∗, Kj = ∂K/∂φj , Ki = (Ki)

∗, and (K−1)j
i

is the inverse matrix of K i
j = ∂2K/∂φ∗

i ∂φ
j. On the other hand, the scalar

field kinetic term is given by

LK = Ki
j∂µφ

∗
i∂

µφj. (7.9)

The minimal supergravity is defined by the choice K = φ∗
iφ

i. This choice
guarantees the canonical kinetic term for the scalar fields. However, this is
a rather odd choice from the point of view of the original Kähler density
because it corresponds to a specific form K̃ = 1 − e−φ∗

i
φi/3. There is no

theoretical reasoning behind this choice except for the convenience of getting
canonical kinetic terms. In particular, K̃ involves interactions among the
chiral superfields suppressed by the Planck scale, because supergravity is
an effective theory valid below the Planck scale and hence allows higher-
dimension operators suppressed by Planck scale. Therefore, one can always
add more terms to the Kähler density suppressed by the Planck scale, such
as φ∗

iφ
∗
jφ

kφl (suppressed by two powers of the Planck scale).
The Polonyi chiral superfield, z, typically acquires a Planck-scale expec-

tation value as well as a supersymmetry breaking F -component expectation
value. The original Polonyi model is given by

W = µ2(z + 2 −
√

3). (7.10)
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Figure 12: Structure of gravity mediation models.

The minimum is at
z = −1 +

√
3 + θ2

√
3µ2. (7.11)

By expanding the scalar potential with the minimal supergravity Kähler po-
tential, one indeed finds universal scalar masses and universal trilinear cou-
plings. Universal gaugino masses can be obtained if one couples the Polonyi
field to the gauge multiplets as

∫

d2θ

(

1

g2
+ cz

)

WαW
α (7.12)

with an O(1) coefficient c the same for all gauge multiplets. The soft parame-
ters arise at the order of magnitude µ2/MP l and hence we take µ ' 1010 GeV
to obtain electroweak-scale supersymmetry breaking.

The problem with minimal supergravity, as we hope is clear from the
above brief discussion, is that it is based on too many assumptions. For
example, one can write terms such as

∫

d4θz∗zφ∗
iφ

i. (7.13)

This term gives rise to additional contributions to the scalar masses due to
the F -compnent of the Polonyi field z. But there is no reason why such
term should come with the same coefficients for all chiral multiplets. If the
coefficients are different, the universal scalar mass hypothesis is comletely
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destroyed. One can even have a flavor-off-diagonal scalar mass squared if
φi and φj share the same gauge quantum numbers. The universality of the
trilinear couplings is also spoiled if there is a direct coupling between the
Polonyi field and the standard model fields in the superpotential

∫

d2θzφiφjφk, (7.14)

or in the Kähler potential
∫

d4θzφ∗
iφj. (7.15)

Finally the gaugino masses become non-universal if the coefficients c in
Eq. (7.12) are not the same.

Not only is universality not guaranteed in supergravity, the presence of
an explicit energy scale µ poses a problem. Supergravity does not explain

the origin of the hierarchy mW ' µ2/MP l �MP l because there is no reason
why µ�MP l.

It appears that replacing the Polonyi model by a model of dynamical
supersymmetry breaking would solve this problem. Then the energy scale of
the hidden sector ∼ 1010 GeV can naturally be generated as a consequence
of dimensional transmutation. However, one cannot write down operators
for the gaugino masses with large enough magnitudes [64].

I initially thought that the existence of the hidden sector coupled to us
only by Planck-scale-suppressed interactions was ugly. However, after more
thought on this issue, I found it is quite reasonable for such a sector to
exist. If the hidden sector is a gauge theory, it could easily be that renormal-
izable interactions between two sectors are forbidden by gauge invariance.
If the only fundamental scale in the theory is the Planck-scale, all interac-
tions between two sectors arise as Planck-scale-suppressed operators in the
Lagrangian. Certainly this reasoning does not work for the Polonyi model
presented here, but does for many gauge theory models described in the
previous section.

7.3.2 Gauge Mediation

A beautiful idea to guarantee the universal scalar masses is to use the MSSM
gauge interactions for the mediation. Then the supersymmetry breaking ef-
fects are mediated to the particles in the MSSM in such a way that they do
not distinguish particles in different generations (“flavor-blind”) because they
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only depend on the gauge quantum numbers of the particles. Such a model
was regarded difficult to construct in the past [58]. However, a break-through
was made by Dine, Nelson and collaborators [65], who started constructing
models where the MSSM gauge interactions could indeed mediate the super-
symmetry breaking effects, inducing postive scalar masses-squared and large
enough gaugino masses (which used to be one of the most difficult things to
achieve) [64]. The original models had three independent sectors, one for su-
persymmetry breaking, one (the messenger sector) for mediation alone, and
finally the MSSM. The messenger sector is essentially a vector-like pair of 5

and 5∗ under the SU(5) GUT gauge group, or in other words

N
[

D(3∗, 1,
1

3
) + D̄(3, 1,−1

3
), L(1, 2,−1

2
) + L̄(1, 2,

1

2
)
]

. (7.16)

N is the number of messengers.16 Due to a (weak) gauge interaction be-
tween the dynamical supersymmetry breaking sector and the messenger sec-
tor, there is a supersymmetric mass term M and supersymetry breaking
B-type mass term F induced for messenger fields. The messenger fermions
therefore have mass M , while the messenger scalars have mass matrices

(D∗, D̄)

(

M2 F
F M2

)(

D
D̄∗

)

. (7.17)

The scalar mass spectrum is therefore
√
M2 ± F , and the mismatch between

the fermion and scalar mass spectra breaks supersymmetry. Supersymmetry
breaking effects in the supersymmetric standard model arise from the loops
of the messenger particles via standard model gauge interactions. The super-
particle spectrum can be predicted in these models in terms of the mass of
messengers M , the amount of supersymmetry breaking F in the messenger
sector, and the number of messengers. In particular, one finds the following
scalar and gaugino soft masses,

Mi = N
g2

i

16π2

F

M
, m2

k =
3
∑

i=1

2Ci
k

(

g2
i

16π2

)2 (
F

M

)2

. (7.18)

Here, C i
k is the second order Casimir T aT a for the gauge group i and the

particle species k.
16In order to preserve gauge coupling unification together with extra fields in the mes-

senger sector, it is usually imposed that the messenger fields come in complete SU(5)
multiplets. Other possibilities are 10 + 10

∗ etc.
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Figure 13: Structure of gauge mediation models [65].
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Figure 14: Structure of direct gauge mediation models [66].

Later models eliminated the messenger sector entirely and the dynamical
supersymmetry breaking sector is coupled directly to the supersymmetric
standard model [66] (see also reviews [38]). The energy scale of the dynamical
supersymmetry breaking is model-dependent.

The main virtue of the gauge mediation models is that the scalar masses
come out universal for all three generations simply because the gauge inter-
actions, responsible for generating scalar masses, do not distinguish different
generations. Therefore the flavor effects in these models are virtually absent.
It is important to note, however, that this virtue is based on a simple but
strong assumption. The flavor physics that distinguishes different genera-
tions should occur at energy scale higher than the mediation scale. Other-
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wise, the generated universal scalar masses would undergo flavor-dependent
interactions at the flavor scale and the scalar masses would likely be highly
non-universal at lower energies.

7.3.3 Anomaly Mediation

Models where the sector of dynamical supersymmetry breaking couples to the
MSSM fields only by Planck-scale suppressed interactions still had difficulty
in generating large enough gaugino masses [64]. One could go around this
problem by a clever choice of the quantum numbers for a gauge singlet field
[67]. On the other hand, it was pointed out only recently that the gaugino
masses are generated by the superconformal anomaly [39]. This observation
was confirmed and further generalized by other groups [68]. Randall and
Sundrum further realized that one could even have scalar masses entirely
from the superconformal anomaly if the sector of dynamical supersymmetry
breaking and the MSSM particles are physically separated in extra dimen-
sions. The supersymmetry breaking parameters are then given by

Mi = −βi(g
2)

2g2
i

F

MP l

,

m2
i = − γ̇i

4

∣

∣

∣

∣

F

MP l

∣

∣

∣

∣

2

,

Aijk = −1

2
(γi + γj + γk)

F

MP l
. (7.19)

The consequence was striking: the soft parameters were determined solely
by the low-energy theory and did not depend on the physics at high energy
scales at all. This makes it attractive as a solution to the problem of flavor-
changing neutral currents. The mediation scale is at the Planck-scale, and
the flavor physics scale is likely be lower. However, unlike the gauge media-
tion or generic supergravity cases, the complicated flavor physics completely
decouples from the supersymmetry breaking parameters below its energy
scale.

The anomaly mediation initially suffered from the problem that some of
the scalars had negative mass-squared. Later simple fixes were proposed [69].
All of these proposals, however, spoiled the virtue of the anomaly mediation,
namely ultraviolet insensitivity. Recently a way to preserve the ultraviolet
insensitivity and to construct realistic models has been proposed [70], using
D-terms for U(1)Y and U(1)B−L.
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Therefore anomaly mediation is a successful mechanism to suppress flavor-
changing effects. On the other hand, it also means that it eliminates possible
interesting flavor signatures of supersymmetry.

7.3.4 Gaugino Mediation

Finally the idea called “gaugino mediation” came out [40]. This idea employs
an extra dimension where the gauge fields propagate in the bulk. Supersym-
metry is broken on a different brane and the MSSM fields learn about the
supersymmetry breaking effects from the MSSM gauge interactions. This
solves the flavor-changing problem in the same way as gauge mediation.

The spectrum generated from this mechanism is that gaugino masses
are proportional to the gauge coupling Mi ∝ g2

i , while the scalar masses
vanish at the mediation scale (the compactification scale in this context). To
avoid a cosmological problem of charged dark matter, the slepton (especially
the right-handed stau) masses need to be pushed by the renormalization
group evolution above the lightest neutralino (the bino in this case). This
sets a lower bound on the mediation scale in excess of 1016 GeV. On the
other hand, flavor physics below this scale would induce non-universality
again. Therefore the flavor physics needs to be put in a small window above
the compactification scale and below the Planck scale. There is a way out
[70], however, from this constraint, if you use the shining mechanism [71] to
generate flavor breaking without O(1) flavor-violation on our brane.
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8 Models of Flavor

The flavor signatures of supersymmetry depend not only on the supersym-
metry breaking/mediation mechanisms but also on the possible sources of
flavor violation. This in turn means that the result depends on the origin of
flavor. I will make this statement more explicit in the discussions below.

One basic question here is how we understand the structure of fermion
masses and mixings. There are at least two popular approaches to this ques-
tion, which can well be mutually compatible. One is grand unification, and
the other is approximate flavor symmetry.

8.1 Grand Unification

Consider the simplest unified group, SU(5). It unifies quarks and leptons
into two irreducible multiplets, 5∗ 3 (dR)c, lL and 10 3 (uR)c, QL, (lR)c. This
immediately gives us hope to understand the relative magnitudes of quark
and lepton masses. Indeed, the simplest SU(5) models with standard model
Higgs doublets embedded into 5 + 5∗ of SU(5) lead to the prediction that
he = hd, hµ = hs, and hτ = hb at the GUT-scale. As shown in Section 5.2,
this relation works phenomenologically for somewhat large tan β due to the
renormalization group evolution of Yukawa couplings between the GUT-scale
and on-shell. However, the relation is quite bad for the first and second gen-
erations. Georgi and Jarskog [72] suggested a modified relation he = hd/Nc,
hµ = hsNc, where Nc = 3 is the number of colors. Phenomenologically, these
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relations are quite successful. The way they implemented these relations in
the SU(5) GUT is somewhat technical, using the embedding of the down-
type Higgs doublet into 45∗ rather than 5∗. Similarly, the minimal version
of the SO(10) models predict a stronger relation ht = hb = hτ = hν3

at the
GUT-scale. This relation may work for large tanβ, while it fails badly for
first and second generations.

One important effect of grand unified theories on the scalar masses is
their running above the GUT-scale [73]. Suppose we assume universal scalar
masses at the Planck scale (minimal supergravity?) as a conservative as-
sumption for possible flavor violations in supersymmetry. The point is that
the RGE running above the GUT-scale introduces a sizable and interesting
flavor violation in the soft parameters. For instance, consider an SO(10)
GUT model.17 All particles in a generation are unified in a 16 multiplet
of SO(10), including the right-handed neutrinos. We, however, have to be
careful about the basis. Because of the Kobayashi–Maskawa matrix, the up-
type particles and down-type particles in a single GUT-multiplet cannot be
simultaneously in the mass eigenstates. If we say one 16 is in the basis where
the top Yukawa coupling is diagonal, other components in the same multi-
plet, b′, τ ′, and ν ′ are not in their mass eigenstates (ν can be, though, if the
large mixing angle in the atmospheric neutrino oscillation arises from rota-
tion among charged leptons). Let us focus on the b′L = VtbbL + VtssL + VtddL

component for the purpose of this discussion. The effect of the top Yukawa
coupling above the GUT-scale suppresses the scalar mass of this multiplet
relative to the first- and second-generation multiplets. The mass matrix for
up-type squarks then reads as

m2
ũL

=







m2

m2

m2 − ∆





 , (8.1)

where ∆ is the effect of the top Yukawa coupling. This mass matrix is diag-
onal in the basis where the top Yukawa coupling is diagonal. Similarly, the
mass matrix for down-type squarks would be the same except that the above
matrix is defined in the basis where the top Yukawa coupling is diagonal.
By performing the KM rotation to go to the basis where down-type Yukawa

17In order to have quark mixing, we need at least two Higgs multiplets 10.
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couplings are diagonal, we find

m2
d̃L

= VKMm
2
ũL
V †

KM = m21 − ∆







|Vtd|2 VtdV
∗
ts VtdV

∗
tb

VtsV
∗
td |Vts|2 VtsV

∗
tb

VtbV
∗
td VtbV

∗
ts |Vtb|2





 , (8.2)

which is non-diagonal and hence violates flavor. One can regard consequences
of the off-diagonal elements derived in this fashion as a “conservative” esti-
mates of the flavor-changing effects in supersymmetric unified theories. How-
ever, there is considerable model dependence on the size of the RGE effects
that depend on the various beta functions above the GUT-scale. More impor-
tantly, it is assumed that the supersymmetry breaking is induced by gravity
mediation (Section 7.3.1). Therefore size of the flavor violation estimated in
this fashion is not guaranteed. However grand unification is one of the major
motivations for supersymmetry anyway and it is quite reasonable to discuss
flavor violation within this context.

One recent addition to this type of effect is the right-handed neutrinos
[74]. Given recent strong evidence for oscillation in atmospheric neutrinos,
it is quite likely that there are right-handed neutrinos around 1015 GeV gen-
erating small neutrino masses of order 0.05 eV with O(1) Yukawa coupling.
If so, the running of slepton masses is affected between the GUT-scale and
right-handed neutrino masses. Especially given that the mixing angle be-
tween µ and τ is large, it can give rise to a large flavor violation. Similarly,
the solar neutrino data, if explained in terms of oscillation of νe, can be linked
to flavor violation as well.

8.2 Approximate Flavor Symmetry

The idea of approximate flavor symmetry is in a sense a generalization of
what people did often in the past: isospin and flavor SU(3) in hadrons. For
instance, the isospin SU(2) is supposedly a symmetry between protons and
neutrons. It is an explicitly broken symmetry due to the difference in mu

and md and also to the electromagnetic interaction. One can stil exploit the
isospin symmetry by regarding md−mu 6= 0 and the electric charge operator
eQ as “spurions” which parametrize the size of the explicit breaking. Then
one can write down the most general Lagrangian consistent with the isospin
transformation properties of the spurions. Even though such an operator
analysis does not have power to predict the size of the coefficients in the
Lagrangian, it can relate different quantities using the SU(2) symmetry and

50



allows us to estimate the order of magnitude of the symmetry breaking effects.
We now generalize this idea to all three generations, assuming a certain flavor
symmetry exists with a small explicit breaking.

The philosophy behind this analysis is the belief that all coupling con-
stants must be O(1). The top Yukawa coupling is indeed O(1) and is “natu-
ral,” while all other Yukawa couplings (possibly except hb, hτ if tanβ is large)
are “unnaturally small.” Therefore there must be a flavor symmetry which
allows top Yukawa coupling while forbidding other Yukawa couplings. The
explicit breaking of the flavor symmetry, however, makes the other Yukawa
couplings possible, at suppressed orders of magnitude due to the smallness
of the spurions.

Let us employ one simple example of flavor symmetry, based on a single
U(1) [75]. The charge assignment is SU(5)-like:18

101(+2) 102(+1) 103(0)
5∗1(0) 5∗2(0) 5∗3(0)
11(0) 12(0) 13(0)

(8.3)

where the subscripts are generation indices and the U(1) flavor charges are
given in bold face. The SU(5)-like multiplets contain 10 = (Ql, (uR)c, (eR)c),
5∗ = (LL, (dR)c), and 1 = (νR)c. If we require the conservation of this U(1)
charge, the top, bottom, tau Yukawa couplings are allowed, all neutrino
Yukawa couplings are allowed, but all other quark, lepton Yukawa couplings
are forbidden. Then let us also suppose that this U(1) symmetry is broken
by a small spurion ε(−1) ∼ 0.04. This allows us to fill in blanks in the
Yukawa matrices, and we can make order of magnitude estimates of the
matrix elements:

Yu ∼







ε4 ε3 ε2

ε3 ε2 ε
ε2 ε 1





 , Yd ∼







ε2 ε2 ε2

ε ε ε
1 1 1





 , (8.4)

Yl ∼







ε2 ε 1
ε2 ε 1
ε2 ε 1





 , Yν ∼







1 1 1
1 1 1
1 1 1





 , (8.5)

18This charge assignment would prefer a large tan β. Another possibility is to assign
charge +1 for all 5’s, which would prefer a small tanβ. This is consistent with the charge
assignments in [76] which makes superpartners of fields with non-zero U(1) charges heavy
due to the anomalous U(1) in string-inspired models and the model safe from flavor-
changing constraints.
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where the left-handed (right-handed) fields couple to them from the left
(right) of the matrices. There are “random” O(1) coefficients in each of
the matrix elements. The property that Yd ∼ Y T

l is true in many SU(5)-like
models. Finally, the Majorana mass matrix of right-handed neutrinos is

MR ∼M0







1 1 1
1 1 1
1 1 1





 , (8.6)

where M0 ∼ 1015 GeV is the mass scale of lepton-number violation. This
flavor charge assignment would predict order of magnitude relations:

mu : mc : mt ∼ ε4 : ε2 : 1,

md : ms : mb ∼ ε2 : ε : 1,

me : mµ : mτ ∼ ε2 : ε : 1. (8.7)

In other words, the following ratios must all be equal up to unknown O(1)
coefficients:

(mu/mt)
1/4 (mc/mt)

1/2 (md/mb)
1/2 ms/mb (me/mτ )

1/2 mµ/mτ

0.059 0.077 0.03 0.03 0.017 0.059
(8.8)

With fluctuation of O(1) coefficients within a factor of two or so, this set of
charge assignments appears successful. Moreover, random O(1) coefficients
among the neutrino Yukawa couplings via the seesaw mechanism naturally
lead to near-maximal mixings in neutrino oscillations [77].19

The above mass matrices would naturally explain (1) the “double” hi-
erarchy in up quarks relative to the hierarchy in down quarks and charged
leptons, (2) Vcb ∼ O(ε) ∼ O(λ2), (3) the similarity between the down quark
and charged lepton masses. Some “concerns” with the above mass matri-
ces would be that the following points may be difficult to understand: (a)
ms ∼ mµ/3, (b) me ∼ md/3, (c) Vus ∼ ε1/2 rather than ε. However, in view
of the fact that the O(1) coefficients would seem “anarchical” [77] from the
low-energy point of view, a factor of 1/3 is quite likely to appear. And once
ms is fluctuated downwards by a factor of ∼ 1/3, Vus would fluctuate up-
wards to ∼ 3ε which is enough to understand the observed pattern of masses
and mixings.

19We need to assume that the CHOOZ limit on |Ue3| is “accidentally” satisfied.
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Therefore one can regard these simple U(1) charge assignements as a
starting point for building models of flavor. In explicit models, often the
so-called Froggatt–Nielsen mechanism [78] is employed, where the spurion
ε arises as a suppressed ratio of a vacuum expectation value, 〈φ〉, which
spontaneously breaks the U(1) flavor symmetry to the mass, M , of vector-
like families whose exchange generates the forbidden Yukawa matrix elements
by picking up the VEV: ε = 〈φ〉/M . For instance, one can imagine the heavy
particles are all at (or slightly below) the Planck scale where the flavor-
breaking VEV is induced around the GUT-scale.

Now the question is what the approximate flavor symmetry does to the
scalar mass matrices. Consider the Q̃ mass matrix. Because their charges dif-
fer in Eq. (8.3) among three generations, off-diagonal elements are forbidden
in the limit of flavor symmetry. The matrix therefore is given parametrically

m2( Q̃†
1 Q̃†

2 Q̃†
3 )







1 ε ε2

ε 1 ε
ε2 ε 1













Q̃1

Q̃2

Q̃3





 . (8.9)

m2 sets the overall scale of supersymmetry breaking parameter, while the off-
diagonal elements are suppressed by powers of ε. Indeed (m2)12 ∼ 0.04m2 is
already an adequate suppression, as discussed in Section 6.2. Note, however,
the charge assignments in Eq. (8.3) do not distinguish ũR, d̃R, l̃L of different
generations, and O(1) off-diagonal elements are allowed. Therefore the sim-
ple U(1) charge assignment here is not enough to suppress all flavor violation
in supersymmetry. Nevertheless it demonstrates the idea: once different gen-
erations are distinguished due to their different flavor symmetry properties,
the off-diagonal elements are suppressed. In this manner, one may hope to
link the fermion masses and scalar masses in a model framework.

Many choices of flavor symmetry groups had been discussed in the litera-
ture. There are U(1)-based models (most notably [42]), while many of them
are non-abelian [41] to ensure the degeneracy between first two generations:
SU(2), O(2), ∆(75), (S3)

3, U(2).

8.3 Grand Theme

Given the considerations in Sections 8.1 and 8.2, the following theme of
supersymmetric flavor physics emerges. First of all, we know the Yukawa
matrices of quarks and charged leptons quite well except for the right-handed
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rotation matrices. We even have learned quite a bit about neutrino masses
and mixings. If supersymmetry is found, the combination of Yukawa matrices
and would-be measurement of superparticle masses allow us to test various
models of flavor. If successful, we will be able to learn the origin of flavor,
e.g., what approximate flavor symmetry is responsible. In my mind, this is
the strongest motivation to pursue rare processes of flavor violation.

9 Flavor Signatures

We finally come to the quantitative discussions of flavor signatures in super-
symmetry. I do not go into quantitative details, but rather present pointers
to the original papers and show some plots to give you an idea on how im-
portant these effects might be.

9.1 Leptons

We first discuss flavor signatures of supersymmetry in the lepton sector. The
list is: gµ − 2, µ→ eγ, µ→ e conversion, τ → µγ, electric dipole moment of
electron. One exotic entry is the study of oscillation among sleptons.

9.1.1 gµ − 2

The anomalous magnetic moment of the muon gµ − 2 can be calculated in
QED to a great accuracy. Even though this quantity is not quite a flavor
signature in that sense that it does not involve any flavor violation, it is
so interesting that I’d like to discuss it. To achieve enough accuracy, the
hadronic contributions in the photon vacuum polarization diagram and the
electroweak loops also need to be included. It turns out that the supersym-
metric contribution is as important as the electroweak contribution if the
sleptons are not too far above mW , and can be much more important if there
is an enhancement due to a large tanβ. The predicition in the minimal su-
pergravity framework was worked out in detail in [46], while the general case
in supersymmetry was studied in [47]. The Brookhaven E821 experiment is
currently taking data and is expected to measure aµ = (gµ − 2)/2 with the
accuracy of ∆aµ = 0.4× 10−9. One can see from Fig. 17 that the supersym-
metric contribution can be important for a wide range of parameter space.
Just before finishing this writeup, E821 reported the measured value that
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deviates from the Standard Model at 2.6σ level, possibly hinting at slepton
masses in the 120-400 GeV range [79].

9.1.2 µ→ eγ

There is no contribution from the Standard Model to this process. Even with
supersymmetry, there is no contribution if soft masses are universal, i.e., no
flavor violation. Therefore the prediction depends sensitively on the source
of flavor violation.

One important source for flavor violation is the GUT-effect, due to the
large top Yukawa coupling above the GUT-scale. The importance of this
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effect was pointed out in [80]. More detailed calculations were carried out
in [81]. A missing diagram in these analyses which can partially cancel the
GUT-effect contribution was pointed out in [82].

The MEGA collaboration has improved the experimental limit down to
BR(µ → eγ) < 1.2 × 10−11 [83]. A new experiment at SIN should improve
it to 10−14 level.

Another possible source for flavor violation here is the effect of the right-
handed neutrinos. This had been studied in [74], and the result depends on
the mass of the right-handed neutrino as well as on which solution to the
solar neutrino problem is right.

Models with ppproximate flavor symmetries also give rise to µ→ eγ. See,
for example, [84].

9.1.3 µ→ e Conversion

This process is closely related to the µ → eγ, but is experimentally cleaner
and is expected to be improved by the MECO experiment to the 0.5 ×
10−16 level [85].

9.1.4 Electric Dipole Moment of Electron

An electric dipole moment de, if it exists, would be direct evidence for T -
violation. The Standard Model does not give rise to an electric dipole mo-
ment of the electron, and hence its detection would be a clear signal of physics
beyond the Standard Model. In the case of supersymmetry, there can be ad-
ditional sources for CP violation in the soft parameters (and µ) and hence
they can give rise to de.

In the case of the GUT-effect, according to [81], there is an approximate
scaling relation between µ→ eγ rate and de such as

|de| ' 10−27 ecm × 1.3 sinφ×
√

BR(µ→ eγ)

10−12
. (9.1)

The current limit is de = (1.8 ± 1.6) × 10−27e cm.
Even without resorting to the GUT-effect, an additional CP violating

parameter among selectrons, charginos, and winos can induce de. If the
phase is O(1), we need the selectron mass to be above a TeV!
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Figure 18: Isoplots of B.R.(µ → eγ) in SU(5) in the M2, Ae/mẽR
plane for

λtG = 1.4, mẽR
= 100 GeV and (a) tan β = 2, µ < 0, (b) tan β = 2, µ > 0,

(c) tan β = 10, µ < 0, (d) tanβ = 10, µ > 0. The dashed (dotted) lines
delimit regions where m2

τ̃R
< 0 (µ2 < 0). The shaded area also extends to

mτ̃R
< 45 GeV. The darker area shows a region where the rate is small,

and passes through zero, due to a cancellation of terms. The dot-dashed line
corresponds to the present experimental limit. For the CKM matrix elements
we take |Vcb| = 0.04 and |Vtd| = 0.01. Taken from [81].
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Figure 19: Isoplots of B.R.(µ → eγ) in SO(10) for mẽR
= 300 GeV, λtG =

1.25 and all other parameters as in fig. 18. Taken from [81].
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Figure 20: Isoplots of C.R.(µ→ e in Ti) in SU(5) for mẽR
= 100 or 300 GeV,

λtG = 1.4 and tanβ = 2.

59



9.1.5 τ → µγ

Atmospheric neutrino oscillations, if explained by the seesaw mechanism with
right-handed neutrinos around 1015 GeV, can yield interesting contributions
to τ → µγ or eγ. The effect is quite large if the sleptons are below 200 GeV
or so and if the right-handed neutrino mass is close to 1015 GeV (as preju-
diced by the SO(10)-type relations). Similar effects on µ → eγ and µ → e
conversion are much more model dependent partly because we do not know
which solution to the solar neutrino problem is right at this moment, giving
a huge possible range for ∆m2 and sin2 2θe2.

9.1.6 Slepton Oscillation

A surprising but interesting and possible consequence of lepton flavor viola-
tion in the slepton mass matrix is the oscillation between different slepton
flavors in the collider environment. This was proposed in [86]. The µ → eγ
constraint requires two mass eigenvalues to be close unless the mixing angle
is very small. If the mass splitting is only of the order of the decay width
Γ ∼ α′m, where α′ = α/ cos2 θW for the right-handed sleptons, the mass
eigenstates live a long enough time to mix with each other. The signature
then is e+e− → ẽ+ẽ−, where ẽ± oscillates into µ̃± and decays into a muon.
Therefore eµ final state can be looked for. The signal is particularly clean
in e−e− collisions because of the absence of W+W− background and larger
cross sections.

9.2 Hadrons

In the hadronic sector, the possible flavor signatures include the neutron
electric dipole moment dn, ε and ε′ in the neutral kaon system, CP violation
in hyperon decay, ∆mB, b→ sγ, and the B dilepton asymmetry.

9.2.1 dn, ε, b→ sγ

The neutron electric dipole moment dn, ε, b → sγ can all be induced from
the GUT effect. Both ε in the kaon system and b → sγ exist within the
standard model, while dn would be a clear sign of new physics.
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Figure 21: Dependence of the branching ratio of τ → µγ on the third-
generation right-handed neutrino Majorana mass Mν3

in the MSSM with
right-handed neutrinos. The input parameters are the same as those of
Fig. (2) except that in this figure we take mẽL

= 170G eV and that we
do not impose the condition fu3

= fν3
but treat Mν3

as an independent vari-
able. The dotted line shown in the figure is the present experimental bound.
Here also the larger tan β corresponds to the upper curve. Taken from [74].

61



-2 -1 1
-4

-3

10

-210

10

-110

10 10

Sin 2θ

2

R

∆m
2m

R

R

______

0.1

1

10

100

0.01

Figure 22: Contours of constant σ(e+e−R → e±µ∓χ̃0χ̃0) (solid) in fb for the
NLC, with

√
s = 500 GeV, mẽR
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Figure 24: Contour plots in minimal SO(10) for mẽR
= 300 GeV , λtG =

1.25, µ < 0, tanβ = 2, and maximal CP violating phases (see text) for (a)
B.R.(µ→ eγ); (b) dn; (c) εK; (d) ε′K/εK; (e) ∆mB; (f) B.R.(b→ sγ). In the
hadronic observables only the gluino exchange contribution is included.
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9.2.2 ε, ε′, Hyperon CP Violation

The ε parameter of the neutral kaon system can also arise from models with
approximate flavor symmetries. Saturating the constraints, it is even possible
to obtain the entire ε from supersymmetry, without any CP violation in the
Kobayashi–Maskawa matrix. If that is the case, the KL → π0νν̄ experiment,
which probes =(VtdV

∗
ts) directly, would see a vanishing result, as opposed to

BR(KL → π0νν̄) ∼ 2–4 × 10−11 as expected in the standard model.
The supersymmetric contribution to ε′ was believed to be negligible for

a long time. However, it was based on the minimal supergravity prejudice,
and an approximate flavor symmetry leads to an acceptable and interesting
contribution to ε′ which can saturate the observed value naturally [48] with
1 TeV squarks. Other mechanisms that generate supersymmetric ε′ have also
been suggested [49, 50].

The same operator that gives rise to ε′ in [48] also may contribute to hy-
peron CP violation [51]. Due to the interference between S-wave and P -wave
amplitudes in the Λ → pπ− decay, there is a forward-backward asymmetry
αΛ in the decay angle distribution due to parity non-conservation. The search
is under way looking for CP-violation manifested as a difference in the asym-
metries αΛ and its CP conjugate −αΛ̄. Fermilab E891 (HyperCP) experiment
hopes to get down to A(Λ) = (αΛ + αΛ̄)/(αΛ − αΛ̄) at the 2 × 10−4 level.

The same type of diagrams in models with approximate flavor symmetries
would lead to rather large µ→ eγ and de, and would require sleptons above
500 GeV or so (see, e.g., [48]).

9.2.3 ∆mBd

B-B̄ mixing, similarly to the neutral kaon system, is also sensitive to new
physics effects. The supersymmetric contribution to ∆mBd

can also be CP-
violating, and can make the asymmetries in B0 → J/ψKs differ from the
true sin 2β. A large effect is especially motivated in models with electroweak
baryogenesis [87]. See also Fig. 24.

9.2.4 B Dilepton Asymmetry

In the standard model, the CP-violating pieces in M12 and Γ12 are essentially
proportional to each other. In many models with approxiate flavor symmetry,
however, there is an additional possibly CP-violating contribution to M12 but
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not to Γ12. The mismatch between M12 and Γ12 can induce a different type
of CP asymmetry. In the same-sign dilepton final states,

e+e− → Υ(4S) → B0B̄0, B0 → l+X, B̄0 → B0 → l+X, (9.2)

one can define the dilepton asymmetry

A =
l+l+ − l−l−

l+l+ + l−l−
. (9.3)

In the standard model the asymmetry is at most of order ASM
<∼ 10−3, while

it can be as large as 10−2 in models with approximate flavor symmetry [88].

9.2.5 b→ sγ

The observed rate of the inclusive b→ sγ is consistent with the NLO standard
model calculation. In general two-doublet Higgs model, including the MSSM,
the additional diagram due to the charged Higgs exchange instead of the
W boson is always constructive with the W -boson diagram, and is already
highly constrained from this process. On the other hand, the supersymmetric
contribution can take either sign, depending mostly on the sign of µ. The
constraint is quite significant.

10 Conclusion

Supersymmetry is a well-motivated candidate for physics beyond the Stan-
dard Model. It would allow us to extrapolate the (supersymmetric version of
the) Standard Model down to much shorter distances, giving us hope to con-
nect the observables at TeV-scale experiments to parameters of much more
fundamental theories. Even though it has been extensively studied over two
decades, many new aspects of supersymmetry have been uncovered in the
last few years. We expect that research along this direction will continue to
be fruitful. We, however, really need a clear-cut confirmation (or falsifica-
tion) experimentally. The good news is that we expect it to be discovered,
if nature did choose this direction, at the currently planned experiments. If
so, we also hope to see a wealth of flavor data to help us unravel the origin
of flavor.
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Figure 25: Constraints on the parameter space in minimal SUGRA models
with non-universal Higgs masses imposed by b→ sγ: domains in the (µ,M2)
plane excluded for tanβ = 3 (a,b,c) and tan β = 10 (d). In all plots the
‘reference’ excluded region for mA = 250 GeV, m0 = 500 GeV and the infra-
red quasi-fixed-point value A0 = 2m1/2 is shaded, assuming mt = 175 GeV.
The effect of varying mA is shown in panel (a), the effect of varying m0 is
shown in panel (b), the effect of changing the sign of A is shown in panel
(c), and panel (d) illustrates the effect of increasing tanβ. See [89] for more
details.
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