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Introduction

In quantum field theories, we encounter many apparent divergences. Of
course all physical quantities are finite, and therefore divergences appear only
at intermediate stages of calculations that get cancelled one or the other way.
However, such apparent divergences pose technical problems in dealing with
them. Obviously we need some methods to add, subtract, multiply, and
divide apparently divergent quantities and extract finite answers in the end.
To do so, we need to “regulate” the divergences, namely to make apparent
divergences manifestly finite so that we can manipulate them. This notes
describe various ways of doing so using explicit examples.

What regularization does is to introduce a new parameter, let’s say ε, to
the apparently divergent quantity O. The quantity is now a function of ε,
O(ε). It is supposed to reduce to the original quantity in the limit ε→ 0

lim
ε→0

O(ε) = O, (1)

you recover the apparent divergence. Yet for finite but very small ε, the
quantity is finite |O(ε)| < ∞. Then we say the divergent quantity O is
regularized by the regulator ε.

One of the main issues of the regularization is that a regulator tends to
break certain symmetries of the quantity. The usefulness of a regulator de-
pends on what symmetries it retains, how easy it is to deal with, how widely
it can be used, etc. In quantum field theories, we see cutoff regularization,
Pauli–Villars regularization, dimensional regularization, ζ-function regular-
ization, lattice regularization, etc. We look at a few explicit examples.

Example I

Consider the one-loop integral in φ4 theory in Euclidean two dimensions,

Σ =

∫
d2p

(2π)2

1

p2 +m2
. (2)

This integral is logarithmically divergent at large momenta that we would
like to regulate. Note that Σ is dimensionless.
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(a) Sharp Cutoff

One way is to simply limit the momentum integral up to p2 ≤ Λ2. We find

Σ =

∫ Λ2

0

dp2

4π

1

p2 +m2

=
1

4π

[
ln(p2 +m2)

]Λ2

0

=
1

4π
ln

Λ2 +m2

m2
. (3)

In practice, this type of sharp brute-force cutoff is awkward and not conve-
nient. One reason is that it explicitly breaks translational invariance in the
momentum space p → p + k which you need to do when you combine sev-
eral propagators into a single one using the Feynman parameters. Another
reason is that it is difficult to maintain gauge invariance because pµ = i∂µ
is not gauge covariant while Dµ = ∂µ − igAµ is. Nonetheless in theories
which admit such a cutoff consistently, it has been used, e.g., J. Polchin-
ski, “Renormalization And Effective Lagrangians,” Nucl. Phys. B 231, 269
(1984).

(b) Gaussian Cutoff

Another but a similar way is the Gaussian cutoff

Σ =

∫
d2p

(2π)2

e−p
2/Λ2

p2 +m2
. (4)

We find

Σ =

∫
d2p

(2π)2

∫ ∞
1/Λ2

dte−t(p
2+m2)em

2/Λ2

=
em

2/Λ2

4π

∫ ∞
1/Λ2

dt

t
e−tm

2

=
em

2/Λ2

4π

∫ ∞
m2/Λ2

dt′

t′
e−t

′

= −e
m2/Λ2

4π
Ei(−m2/Λ2). (5)
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Here, Ei(x) is the exponential integral function. It has Taylor expansion for
large Λ,

Σ =
1

4π

[(
log

Λ2

m2
− γ
)

+
m2

Λ2

(
2 log

Λ2

m2
+ 1 + γ

)
+O

(
m2

Λ2

)2
]
. (6)

This regularization can be implemented by the modified kinetic term in the
Lagrangian

1

2
∂µφe

�/Λ2

∂µφ, (7)

which modifies each propagator to e−p
2/Λ2

/(p2 + m2). It still suffers from
the lack of translational invariance in the momentum space, but it can in
principle be made gauge-invariant by replacing � = ∂µ∂µ by DµDµ.

(c) Higher Derivative Regularization

Yet more related regularization is called higher derivative regularization. It
also modifies the quadratic terms such as

1

2
∂µφ

(
1− �

Λ2

)
∂µφ+

1

2
m2φ

(
1− �

Λ2

)
φ. (8)

Then the propagator is modified to(
1 +

p2

Λ2

)−1
1

p2 +m2
=

Λ2

(p2 + Λ2)(p2 +m2)
. (9)

The one-loop diagram is

Σ =

∫
d2p

(2π)2

Λ2

(p2 + Λ2)(p2 +m2)

=

∫ 1

0

dz
d2p

(2π)2

Λ2

(p2 + zΛ2 + (1− z)m2)2

=

∫ 1

0

dz
1

4π

Λ2

zΛ2 + (1− z)m2

=
1

4π

Λ2

Λ2 −m2
ln

Λ2

m2
. (10)

This one also still suffers from the lack of translational invariance in the
momentum space, but it can again in principle be made gauge-invariant by
replacing � = ∂µ∂µ by DµDµ.
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(d) Pauli–Villars Regularization

Pauli–Villars regularization subtracts off the same loop integral with a much
larger mass,

Σ =

∫
d2p

(2π)2

(
1

p2 +m2
− 1

p2 +M2

)
=

1

4π
ln
M2

m2
. (11)

This method has the benefit of maintaining the translational invariance in
the momentum space. It also maintains the gauge invariance that can be
seen the following way. The subtracted piece is regarded as a contribution
of another field (Pauli–Villars field) with the same quantum numbers as the
original field, but has the opposite statistics. For instance, in φ4 theory,
the Pauli–Villars field Φ is fermion and is Grassmann-odd number in path
integral even though it has the same quantum number and hence is a scalar
field. Of course a fermionic scalar field would break spin-statistics theorem
and leads to violation of causality and/or positivity of energy. However, as
long as we take its mass M very large and deal with physics at energy scales
much lower than M , such diseases do not appear. Unfortunately, it is still not
appropriate in chiral gauge theories because they do not allow mass terms
for fermions.1

(e) Dimensional Regularization

Dimensional regularization assumes that the spacetime dimension is not two
but is analytically continued to 2− 2ε

Σ = µ2ε

∫
d2−2εp

(2π)2−2ε

1

p2 +m2
. (12)

Here, µ is an arbitrary parameter of dimension of energy to force the result
Σ to be dimensionless. The result is

Σ = µ2ε 1

(4π)1−εΓ(ε)(m2)−ε

=
1

(4π)1−ε

[
1

ε
− γ +

1

2

(
γ2 +

π2

6

)
ε+O(ε2)

](
m2

µ2

)−ε
1One way around this problem is to introduce an infinite number of Pauli–Villars fields

with mass Mn = nM1 with alternating statistics. See S. A. Frolov and A. A. Slavnov,
“An Invariant Regularization Of The Standard Model,” Phys. Lett. B 309, 344 (1993).
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=
1

4π

[
1

ε
− γ + ln 4π − ln

m2

µ2
+O(ε)

]
. (13)

Compared to the result of the sharp cutoff, we can identify the effective cutoff
to be Λ2 = 4πµ2e1/ε−γ. This regularization has many advantages: transla-
tional invariance in the momentum space, gauge invariance. The drawback
is obvious: it is highly artificial to discuss spacetime in non-integer dimen-
sions. Also, it is tricky to extend the Dirac gamma matrices to non-integer
dimensions. In general, the number of degrees of freedom changes from two
to 2− 2ε dimensions which cause problems.

(f) Dimensional Reduction Regularization

This is technically a small modification of the dimensional regularization,
yet it is much better conceptually as the spacetime dimension is maintained
at two. It is assumed that 2ε dimensions out of two are “compactified” into
small size so that the momenta along these 2ε directions are quantized and we
consider only the zero modes. Then the momentum integrals are done only
in 2 − 2ε dimensions. However the Dirac gamma matrices remain the same
as in two dimensions. The vector fields now decompose into the vector fields
in the remaining 2− 2ε dimensions and the components in the 2ε dimensions
that have lost the indices and appear as scalars. The latter are called “ε-
scalars”. This way, the momentum integrals are regulated yet the number of
degrees of freedom does not change.

For instance, if we compute the closed loop of fermions with the Yukawa
coupling ψ̄ψφ for the tadpole diagram of the scalar φ, it is

−
∫
d2−2εp

(2π)2

Tr( 6p+m)

p2 +m2
. (14)

When taking the trace over the Dirac indices, it is taken as if it is still in two
dimensions, and hence Tr(6p + m) = 2m. Similarly, a loop of gauge boson
would be gµνg

µν = 2− 2ε, and the contribution of ε-scalars is added with 2ε
of them. The total reproduce the original 2 components of the vector field.
Note, however, that the ε-scalars may receive separate counter terms from
the remaining 2− 2ε vector boson because they are independent fields now.
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Example II

Consider the following one-parameter integral,

F (a) =

∫ ∞
0

dt

t
e−at. (15)

This integral is divergent at the boundary t = 0. If one deals with it incor-
rectly, one may conclude that it does not depend on the parameter a at all,
since one can make a change of the variable t = t′/a as

F (a) = −
∫ ∞

0

dt′

t′
e−t

′
(16)

where the parameter a has completely dropped out. Namely this integral is
apparently scale-invariant . However, this invariance cannot be retained by
any of the regularizations below, a common phenomenon in quantum field
theories. In the following, imagine that the parameter a has a dimension
of energy squared, and t the inverse energy squared. The quantity F (a) is
dimensionless.

The simplest way to deal with this divergence is to cutoff the integral at
t = 1/Λ2,

FΛ(a) = −
∫ ∞

1/Λ2

dt

t
e−at. (17)

By the same change of variable, we find

FΛ(a) = −
∫ ∞
a/Λ2

dt′

t′
e−t

′
= Ei(−a/Λ2) (18)

This is so-caled exponential integral function −Ei(−a/Λ2). It has Taylor
expansion for large Λ,

FΛ(a) = log
a

Λ2
+ γ − a

Λ2
+

a2

4Λ4
+O(Λ−3). (19)

It is indeed divergent as Λ → ∞, but the leading dependence on a is clear:
log a. The cutoff Λ has the dimension of energy, namely a high-energy cutoff.

Pauli–Villars regularization takes a difference of a divergent quantity with
a similar quantity with a different parameter. Namely,

F (a)− F (A) = −
∫ ∞

0

dt

t
(e−at − e−At). (20)
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Because the new term in the integrand vanishes in the limit A → ∞, we
expect that the original quantity is recovered in this limit. This integral
converges and is simply

F (a)− F (A) = log
a

A
. (21)

Again the result is divergent when the regulator is removed A → ∞, while
we find the same leading dependence on a: log a. However, the finite terms
are different from the cutoff regularization, and one needs to consistently use
the same regularization until the manifestly finite result is obtained. The
physical meaning of A is similar to the cutoff in energy Λ above, yet the way
energy is cutoff here is more smooth. Their naive comparison says A = Λ2e−γ.

The dimensional regularization in this example is

Fε(a) = −µ2ε

∫ ∞
0

dt

t1−ε
e−at = −µ2εa−ε

∫ ∞
0

dt′ t′ε−1e−t
′
= −Γ(ε)

(
a

µ2

)−ε
.

(22)
Note that we had to introduce an arbitrary energy scale µ to keep the quantity
dimensionless. The expression has a Taylor expansion in the regulator,

Fε(a) = −
[

1

ε
− γ +

1

2

(
γ2 +

π2

6

)
ε+O(ε2)

](
a

µ2

)−ε
= −1

ε
+γ+log

a

µ2
+O(ε).

(23)
It has the same dependence on a as other regulators, while the expression
is again different. A naive comparison with the cutoff regularization says
Λ2 = µ2e1/ε.
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