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1 Euclidean Space

We first consider representations of Spin(N).

1.1 Clifford Algebra

The Clifford Algebra is
{γi, γj} = 2δij. (1)

The point of studying Clifford algebra is that once you find representations of
Clifford algebra you can immediately construct representations of Spin(N).
Generators of rotations in Spin(N) are given by

M ij =
i

4
[γi, γj]. (2)

It is easy to see that they satisfy the Lie algebra of SO(N).
A representation of Clifford algebra can be constructed by tensor products

of [N/2] Pauli matrices. For even dimensions N = 2k, we have k Pauli
matrices,

γ1 = σ1 ⊗ 1⊗ · · · ⊗ 1⊗ 1, (3)

γ2 = σ2 ⊗ 1⊗ · · · ⊗ 1⊗ 1, (4)

γ3 = σ3 ⊗ σ1 ⊗ · · · ⊗ 1⊗ 1, (5)

γ4 = σ3 ⊗ σ2 ⊗ · · · ⊗ 1⊗ 1, (6)
...

γ2k−3 = σ3 ⊗ σ3 ⊗ · · · ⊗ σ1 ⊗ 1, (7)

γ2k−2 = σ3 ⊗ σ3 ⊗ · · · ⊗ σ2 ⊗ 1, (8)

γ2k−1 = σ3 ⊗ σ3 ⊗ · · · ⊗ σ3 ⊗ σ1, (9)

γ2k = σ3 ⊗ σ3 ⊗ · · · ⊗ σ3 ⊗ σ2, (10)

γ2k+1 = σ3 ⊗ σ3 ⊗ · · · ⊗ σ3 ⊗ σ3. (11)
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The last one γ2k+1 plays the role of γ5 in four dimensions. You can readily
verify

γ2k+1 = (−i)kγ1γ2 · · · γ2k−1γ2k. (12)

It is easy to see that any of two gamma matrices anti-commute, while the
square of any one is an identity matrix. Therefore, this gives a representation
of Clifford algebra for Spin(2k). In fact, This is a representation of Clifford
algebra for Spin(2k + 1) as well, by including γ2k+1.

1.2 Reality Property of General Representations

Here are a few remarks about the reality property of a representation of
compact simple Lie algebra.

When given an irreducible representation matrix ρ(T a) for generators
T a, the “conjugate representation” is defined by −ρ(T a)T . It is easy to check
that they satisfy the same Lie algebra.∗ The reason this is called a conjugate
representation is because the representation matrix of a group element is
simply the complex conjugate,

ρ(g) = ρ(eiω
aTa

) = eiω
aρ(Ta) → e−iω

aρ(Ta)T

= e−iω
aρ(Ta)∗ = ρ(g)∗. (13)

I used the hermiticity of the generators ρ(T a)T = ρ(T a)∗.†

A representation is said to be real if you can find a unitary matrix C that
satisfies

ρ(T a)T = −Cρ(T a)C−1. (14)

Then the representation and its conjugate representation are unitary equiv-
alent. If there is no such matrix C, the representation is said to be complex.

Taking the transpose of the both sides,

ρ(T a) = −C−1Tρ(T a)TCT . (15)

Substituting it back into Eq. (14),

ρ(T a)T = −C(−C−1Tρ(T a)TCT )C−1 = (CC−1T )ρ(T a)T (CC−1T )−1. (16)

∗There are many conjugations you can define. The definition here is what is commonly
used in the physics literature.
†This of course breaks down for Lorentz groups because they are non-compact and

hence their finite-dimensional representations are non-unitary.
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In other words, the matrix CC−1T commutes will all generators. According
to Schur’s lemma, such a matrix must be proportional to an identity matrix
for an irreducible representation. Therefore, CC−1T = c1, or

C = cCT . (17)

Taking transpose of both sides, we find CT = cC = c2CT , and hence c2 =
1. Only possibilities are c = ±1, and hence C is either symmeric or anti-
symmetric matrix.

Under a general unitarity transformation of generators ρ(T a)′ = U †ρ(T a)U ,
the Eq. (14) changes to

ρ(T a)′T = UTρ(T a)U∗ = −UTCρ(T a)C−1U∗ = −UTCUρ(T a)′U †C−1U∗.
(18)

Therefore in the new basis, the matrix C becomes UTCU . As a result,
the symmetry of C, whether it is symmetric C = CT or anti-symmetric
C = −CT , is basis-independent.

There is still a question if you can find a basis where all representation
matrices of group elements are real. If you cannot find such a basis, the
representation is said to be pseudo-real. If you can, it is real in the strict
sense.

Any symmetric complex matrix AT = A can be transformed to a real
semi-positive diagonal matrix UTAU = D. If C is symmetric, we can there-
fore find a basis where C is real semi-positive diagonal. But C is unitary,
and hence eigenvalues are phases. The only real semi-positive phase is unity.
Therefore in this basis the matrix C is a unit matrix, and we find

ρ(T a)T = −Cρ(T a)C−1 = −ρ(T a), (19)

so that all generators are represented as pure imaginary anti-symmetric ma-
trices. Then the representation of group elements is real:

ρ(g)∗ = e−iω
aρ(Ta)T

= eiω
aρ(Ta) = ρ(g). (20)

You can see that all representation matrices are real if C is symmetric.
On the other hand, if C is anti-symmetric, there is no basis where C is

an identity matrix which is symmetric. In this case, the representation and
its conjugate representation are unitarity equivalent, but you cannot find a
basis where the representation matrices are real. The doublet representation
of SU(2), or the fundamental representations of Sp(N) groups are examples
of such pseudo-real representations.
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1.3 Reality Property of Clifford Algebra

In the case of Clifford algebra, γ-matrices are roughly speaking square root
of group generators, and there are two possibilities for the representation to
qualify as “real”,‡

ρ(T a)T = −CγiC−1, (21)

ρ(T a)T = +T γiT −1. (22)

If C exists, you can make all γ-matrices pure imaginary anti-symmetric,
following the same arguments as the group generators in the previous sec-
tion. On the other hand, if T exists, you can make all γ-matrices pure real
symmetric.

Given the explicit representation of Clifford algebra in Eq. (11), we see
that γi are symmetric for odd i, and anti-symmetric for even i. We somehow
need to distinguish even and odd gammas. Therefore we try matrices

C1 = γ1γ3 · · · γ2k−1, (23)

C2 = γ2γ4 · · · γ2k. (24)

From this point on, the situation depends on k mod 4 (hence N mod 8).

1.3.1 k = 0 mod 4

In this case,

C1 = (−iσ2)⊗ σ1 ⊗ · · · (−iσ2)⊗ σ1, (25)

C2 = (iσ1)⊗ σ2 ⊗ · · · (iσ1)⊗ σ2. (26)

From the definitions Eqs. (23,24), we find

C1γiC−1
1 = −γiT , (27)

C2γiC−1
2 = γiT . (28)

Hence, C = C1, T = C2.
Both C and T are symmetric.
Both C and T commute with γ2k+1.

‡The matrix C corresponds to charge conjugation, while T to time reversal in 3+1
dimensional Dirac equation, hence this notation.
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1.3.2 k = 1 mod 4

In this case,

C1 = σ1 ⊗ (−iσ2)⊗ · · · (−iσ2)⊗ σ1, (29)

C2 = σ2 ⊗ (iσ1)⊗ · · · (iσ1)⊗ σ2. (30)

From the definitions Eqs. (23,24), we find

C1γiC−1
1 = γiT , (31)

C2γiC−1
2 = −γiT . (32)

Hence, C = C2, T = C1.
C is anti-symmetric while T is symmetric.
Both C and T anti-commute with γ2k+1.

1.3.3 k = 2 mod 4

In this case,

C1 = (−iσ2)⊗ σ1 ⊗ · · · (−iσ2)⊗ σ1, (33)

C2 = (iσ1)⊗ σ2 ⊗ · · · (iσ1)⊗ σ2. (34)

From the definitions Eqs. (23,24), we find

C1γiC−1
1 = −γiT , (35)

C2γiC−1
2 = γiT . (36)

Hence, C = C1, T = C2.
Both C and T are anti-symmetric.
Both C and T commute with γ2k+1.

1.3.4 k = 3 mod 4

In this case,

C1 = σ1 ⊗ (−iσ2)⊗ · · · (−iσ2)⊗ σ1, (37)

C2 = σ2 ⊗ (iσ1)⊗ · · · (iσ1)⊗ σ2. (38)
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From the definitions Eqs. (23,24), we find

C1γiC−1
1 = γiT , (39)

C2γiC−1
2 = −γiT . (40)

Hence, C = C2, T = C1.
C is symmetric while T is anti-symmetric.
Both C and T anti-commute with γ2k+1.

1.3.5 Summary for Even Dimensions

Summarizing discussions, the properties of C and T matrices are given in the
Table below.

N C T
S/A C/A S/A C/A

8k S C S C
8k + 2 A A S A
8k + 4 A C A C
8k + 6 S A A A

Table 1: Properties of C and T matrices for various k. S/A refers to sym-
metric or anti-symmetric. C/A refers to either commute or anti-commute
with γ2k+1.

For N = 8k and N = 8k + 4 dimensions, both C and T matrices com-
mute with γN+1. Therefore, the irreducible representations of Spin(N) with
definite chirality under γN+1 are each self-conjugate. For N = 8k C, T are
symmetric and the irreducible representations are both real in the strict sense.
They are called Majorana–Weyl spinors.

1.3.6 Summary for Odd Dimensions

For odd (2k+1) dimensions, we include γ2k+1 as one of the gamma matrices.
Not both C and T matrices exist for odd dimensions.

For 8n dimensions, both C and T commute with γ2k+1. Therefore there
is no C matrix for 8n+ 1 dimensions. T matrix is symmetric.

For 8n+2 dimensions, both C and T anti-commute with γ2k+1. Therefore
there is no T matrix for 8n+ 3 dimensions. C matrix is anti-symmetric.
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For 8n + 4 dimensions, both C and T commute with γ2k+1. Therefore
there is no C matrix for 8n+ 5 dimensions. T matrix is anti-symmetric.

For 8n+6 dimensions, both C and T anti-commute with γ2k+1. Therefore
there is no T matrix for 8n+ 7 dimensions. C matrix is anti-symmetric.

N C T
8k + 1 N/A S
8k + 3 A N/A
8k + 5 N/A A
8k + 7 S N/A

Table 2: Properties of C and T matrices for various odd N . S/A refers to
symmetric or anti-symmetric. N/A means it does not exist.

1.4 Majorana Spinor

Dirac equation in Euclidean space is§

(γi(∂i − igAiT a)−m)ψ = 0. (41)

Here, Ai is a gauge field, and T a the (hermitian) representation matrices of
the corresponding Lie algebra. An interesting question is if this equation is
real, so that we can consistently impose reality on ψ. If T exists for that
dimension and is symmetric, γi can be taken to be all real, and hence γi∂i is
real. The whole equation then becomes real if T a are all pure imaginary, i.e.
if the fermion belongs to a real representation of the gauge group. Therefore,
a reality condition can be imposed on ψ if all γ-matrices can be taken real
and if the fermion belongs to a real representation of the gauge group. Such
a fermion is called Majorana spinor. In a general representation where γ-
matrices are not taken to be real, the complex conjugate of Dirac equation
is

(γi∗(∂i + igAiT
a∗)−m)ψ∗

= (T γiT −1(∂i + igAiT
a∗)−m)ψ∗

= T (γi(∂i − igAiT a)−m)T −1ψ∗ = 0. (42)

§Dirac equation does not have a solution in Euclidean space, unless m = 0 and there
exists a zero mode for γiDi. Nor does Klein–Gordon equation (∂2 −m2)φ = 0.
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In the last line, we assumed a real representation of the gauge group. The
Majorana condition is then ψ∗ = T ψ. Taking complex conjugate of both
sides, ψ = T ∗ψ∗ = T ∗T ψ. If T is anti-symmetric, T ∗T = −T †T = −1,
and Majorana condition is inconsistent. However, if T is symmetric, this
condition is consistent and indeed can be imposed on spinors.

Note that having a Majorana spinor is a stronger condition than just
having real representation of Spin(N). For 8k+7 dimensions, there is a sym-
metric C matrix and hence all gamma-matrices can be taken pure imaginary.
This makes the Spin(8k + 7) representation real. However, pure imaginary
gamma-matrices do not make Dirac equation real, and we cannot impose
Majorana condition on the spinor.

Only for N = 8k dimensions, T is symmetric and commutes with γN+1.
Therefore, the Majorana condition can be satisfied for a spinor with a definite
chirality. Such a fermion is called Majorana–Weyl spinor.

Combining results from previous sections, here is the table that shows in
what dimensions Majorana or Majorana–Weyl spinor can exist.

N Weyl reality Majorana Majorana–Weyl
8k yes real yes yes
8k + 1 no real yes no
8k + 2 yes complex yes no
8k + 3 no pseudo-real no no
8k + 4 yes pseudo-real no no
8k + 5 no pseudo-real no no
8k + 6 yes complex no no
8k + 7 no real no no

Table 3: Existence of various types of spinors in Euclidean N dimensions.

2 Minkowski Space

We now consider representations of Spin(N − 1, 1).
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2.1 Symmetry Property of General Representations

Here are a few remarks about the reality property of a representation of
non-compact simple Lie algebra.

When given an irreducible representation matrix ρ(T a) for generators T a,
the “transpose representation” is defined by −ρ(T a)T as in the compact case.
However, there are potentially more representations related to this irreducible
representation for the non-compact case. All together four sets of matrices

ρ(T a), −ρ(T a)∗, −ρ(T a)T , ρ(T a)† (43)

all satisfy the same Lie algebra. The first and the fourth are the same for
the compact case, and so are the second and the third. We have already
determined if ρ(T a) and −ρ(T a)∗ give equivalent representations. We are yet
to determine if −ρ(T a)T give an equivalent representation.

2.2 Symmetry Property of Clifford Algebra

The existence and the symmetry properties of C and T matrices are the same
in Euclidean N dimensions and Minkowski (N − 1) + 1 dimensions. This is
because you can freely change the signature by multiplying i on gamma-
matrices, which does not change the symmetry property of gamma-matrices.
When either C or T exists, the generators i

4
[Γµ,Γν ] and their negative trans-

pose i
4
[ΓµT ,ΓνT ] are unitarity equivalent. Since both of them exist for all

even dimensions, and either one of them does for all odd dimensions, these
two representations are always unitarity equivalent.

When C exists and is symmetric, one can go to a basis where C is an iden-
tity matrix and hence gamma-matrices are made all anti-symmetric. When
T exists and is symmetric, one can go to a basis where T is an identity
matrix and hence gamma-matrices are made all symmetric. In both cases,
the generators can be represented by anti-symmetric matrices and hence
ρ(T a) = −ρ(T a)T . They are therefore manifestly identical for dimensions
N = 0, 1, 2, 6, 7 mod 8. For N = 3, 4, 5 mod 8, they cannot be manifestly
identical, but are still unitary equivalent.

As far as I know, the symmetry property of the Clifford algebra does not
play any important roles.
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2.3 Majorana Spinor

The Clifford Algebra is
{Γµ,Γν} = 2gµν . (44)

We use the metric gµν = diag(−1,+1, · · · ,+1). With this metric, Γ0 is anti-
hermitian, while Γ1 to ΓN−1 are all hermitian. Generators of rotations in
Spin(N − 1,1) are given by

Mµν =
i

4
[Γµ,Γν ]. (45)

It is easy to see that they satisfy the Lie algebra of SO(N − 1,1). Because
only Γ0 is anti-hermitian, they satisfy

Γ0ΓµΓ0 = −Γµ†. (46)

The important point is that you can start with the gamma matrices γi

in N − 2 dimensions, and tensor them with another Pauli matrix to obtain
gamma matrices of Spin(N − 1, 1) without changing their reality properties.
For instance, suppose you could make all gamma-matrices γ1 to γN−2 pure
real in Euclidean N − 2 dimensions. Then, you can define gamma-matrices
in Minkowski (N − 1) + 1 dimensions by

Γ0 = 1⊗ (iσ2), (47)

Γi = γi ⊗ σ3, (48)

ΓN−1 = 1⊗ σ1. (49)

You find that all Γ’s in Minkowski (N − 1) + 1 dimensions are also pure real.
If γi are all pure imaginary, you can define pure imaginary Γ’s

Γ0 = 1⊗ (iσ1), (50)

Γi = γi ⊗ σ3, (51)

ΓN−1 = 1⊗ σ2. (52)

Therefore, the question if you can impose Majorana condition is the same in
Spin(N − 2) and Spin(N − 1,1).

Another way to see the existence of Majorana spinor is by the following
analysis as what we have done in Euclidean case. First notice that

Γµ∗ = (Γµ†)T = (Γ0ΓµΓ0)T =

{
CΓ0ΓµΓ0C−1 = (CΓ0)Γµ(CΓ0)−1

T Γ0ΓµΓ0T −1 = −(T Γ0)Γµ(T Γ0)−1 (53)
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Therefore, you can make all gamma-matrices pure real when CΓ0 is sym-
metric, and pure imaginary when CΓ0 anti-symmetric. Note that (CΓ0)T =
Γ0TCT = −CΓ0C−1CT , and hence the symmetry (anti-symmetry) of C im-
plies anti-symmetry (symmetry) of CΓ0. Because C is anti-symmetric in
N = 2, 3, 4 mod 8, these are indeed dimensions where Majorana spinors
can exist. The Majorana condition can be written in the basis-independent
manner, ψ∗ = CΓ0ψ, or ψ̄T = Γ0Tψ∗ = Γ0TCΓ0ψ = −CΓ0Γ0ψ = Cψ.

One obtains also the same result by considering the possible Majorana
mass term in the action. Because of the Majorana condition ψ̄T = Cψ, the
mass term is

−m
∫
dN ψ̄ψ = −m

∫
dNψTCTψ. (54)

To be consistent with the anti-commuting nature of ψ, CT and hence C must
be anti-symmetric.

N Weyl reality Majorana Majorana–Weyl
8k yes complex no no
8k + 1 no real no no
8k + 2 yes real yes yes
8k + 3 no real yes no
8k + 4 yes complex yes no
8k + 5 no pseudo-real no no
8k + 6 yes pseudo-real no no
8k + 7 no pseudo-real no no

Table 4: Existence of various types of spinors in Minkowski (N − 1) + 1
dimensions.

3 Minkowski vs Euclidean Theory

In Minkowski space, you can impose Majorana condition on the fermion field
operator and reduce the degrees of freedom by a half. However, after Wick
rotation, you may not be able to impose the Majorana condition because the
representation theory is different between Minkowski and Euclidean spaces.
Is Dirac determinant defined in Wick-roated Euclidean path integral the right
thing to look at?
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To calculate the determinant of the Dirac operator, we first look at
eigenequations

γiDiψn = iλnψn. (55)

λn ∈ R because the operator γiDi is anti-hermitian. In the presence of gauge
field and space-time curvature, the covariant derivative is

Di = ∂i − igAai T a, (56)

where T a are representation matrices. Space-time curvature can also be
included in this form by setting

gAai T
a = ωabi

σab

2
, (57)

where ωi is the spin connection and a, b the local Lorentz coordinates. Be-
cause we are interested in the question of Majorana spinors, we assume that
the representation matrices T a are all pure imaginary. Given an eigenfunc-
tion ψn, we can take complex conjugate of the eigenequation

− iλnψ∗n = γi∗Diψ
∗
n = −CγiDiC−1ψ∗n. (58)

In other words, C−1ψ∗n also has the eigenvalue iλn for the Dirac operator.
The question is if they are linearly independent.

If C is symmetric, you can go to the basis where C = 1 and γi pure
imaginary. Then the eigenequation Eq. (55) admits real solutions, and
C−1ψ∗n = ψn. Therefore, eigenfunctions ψn and C−1ψn are not independent,
and eigenvalues are not necessarily degenerate. On the other hand, if C is
anti-symmetric, the eigenfunction is necessarily complex, and C−1ψ∗n gives
a linearly independent eigenfunction. Then any eigenvalue iλn is doubly
degenerate. Therefore, one can naturally define a square root of the Dirac
determinant, by choosing only one of the doubly degenerate eigenvalues. This
result precisely corresponds to the situation in the Minkowski space where
you can reduce the degrees of freedom by a half using the Majorana condition.

The Euclidean action for the Majorana fermion is∫
dNx

1

2
[ψTC−1(γiDi −m)ψ]. (59)

The path integral measure is the product of Grassman integration over all
eigenmodes. If we focus on one eigenvalue iλn, the field can be expanded as

ψ = ψnη + Cψ∗nχ, (60)
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where η, χ are Grassman odd integration variables, while ψn and Cψ∗n are
linearly independent eigenfunctions of γiDi. Then the Euclidean action is∫
dNxψTC−1(γiDi−m)ψ =

∫
dNx

1

2
(iλn−m)ηχ(ψTnψ

∗
n+ψ†nψn) = (iλn−m)ηχ.

(61)
Grassman integration

∫
dηdχ gives just (iλn −m). This way, you obtain a

square root of the determinant.
In even dimensions, Eq. (55) can be split into two equations,

γiDiψnL = iλnψnR, (62)

γiDiψnR = iλnψnL. (63)

Therefore, the Dirac operator has the form(
0 iλn
iλn 0

)
, (64)

and hence has both eigenvalues ±iλn. Keeping only one sign naturaly defines
another square root of Dirac determinant. This corresponds to the Weyl
spinor in Minkowski space.

The Euclidean action in this case is given by∫
dNx[ψ̄RγiDiψL]. (65)

The Grassman variables ψL and ψ̄R are independent, and their integration
yields iλn for each eigenmodes. Actually, the relative phase between ψL and
ψ̄R can be changed and hence the integration can yield iλn times a phase
factor. This leaves the ambiguity in defining the determinant up to a phase,
and the determinant is regarded as a section of a line bundle (determinant
line bundle) over the space of gauge connections.

Finally, the question is if you can naturally take a fourth root of Dirac
determinant by combining both of them. This is possible if the Euclidean
Majorana action Eq. (59) splits into ψL and ψR. In N = 8k + 2 dimensions,
C anti-commutes with γ8k+3, and

ψTC−1(γiDi −m)ψ = ψTLC
−1γiDiψL + ψTRC

−1γiDiψR (66)

Therefore, you can throw away ψR from path integral and obtain a fourth
root of the determinant. On the other hand in N = 8k + 4 dimensions, C
commutes with γ8k+5 and

ψTC−1(γiDi −m)ψ = ψTRC
−1γiDiψL + ψTLC

−1γiDiψR. (67)
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There is no consistent way to throw away either ψL or ψR from the path
integral.

4 Supersymmetry

In 4k+2 Minkowski dimensions, the are two inequivalent self-conjugate (real
or pseudo-real) spinor representations. When you introduce supercharges,
you can introduce any of them in either representation, and talk about (1, 0),
(1, 1), (2, 0) supersymetry etc. In all other dimensions, however, one can only
talk about N = 1, N = 2, etc supersymmetry. In 4k dimensions, the super-
charges are complex, and once you introduce Q in one of the complex repre-
sentations, their hermitian conjugate Q̄ appear in the (inequivalent) conju-
gate representation and you need equal number of them. In odd dimensions,
there is no Weyl representation and hence only one spinor representation.
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