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1 Dirac Index

The Dirac operator i6D on a compact closed Euclidean Space of even dimen-
sions D = 2n has the property that it anti-commutes

i6DγD+1 + γD+1i6D = 0 (1)

with
γD+1 = (−i)nγ1 · · · γD = inγD · · · γ1. (2)

The Dirac operator is a hermitean operator. Throughout this note, I use the
notation

Dµ = ∂µ − iAµ = ∂µ − iAaµt
a, (3)

and the gauge coupling constant appears only in the normalization of the
gauge kinetic term

L ∋ −
1

2g2
trFµνF

µν . (4)

Just to fix the notation,

− iFµν = −iF a
µνt

a = [Dµ, Dν ]. (5)

For later purposes, it is useful to introduce the differential forms

A = −iAµdx
µ = −iAaµt

adxµ (6)

and

F = −i
1

2
Fµνdx

µ ∧ dxν = −i
1

2
F a
µνt

adxµ ∧ dxν . (7)

Then D = d+ A and F = dA+ A2.
Because (i6D)2 commutes with γ5, we can look for their simultaneous

eigenstates,

(i6D)2ψn,± = λ2
nψn,±, γD+1ψn,± = ±ψn,±. (8)

1



Note that λ2
n is positive semi-definite because they are eigenvalues of a

squared hermitean operator. We choose λn ≥ 0 without a loss of generality.
We normalize the eigenfunctions such that
∫

dDxψ
†
n,Rψm,R = δn,m,

∫

dDxψ
†
n,Lψm,L = δn,m,

∫

dDxψ
†
n,±ψm,∓ = 0.

(9)
Here, R (L) refers to γD+1 = +1 (−1) and we use both notations interchang-
ingly.

Because of the anti-commutation, i6Dψn,L is right-handed, and i6Dψn,R is
left-handed. It is easy to see that

(i6D)2i6Dψn,± = i6D(i6D)2ψn,± = λ2
ni6Dψn,±, (10)

and hence i6Dψn,± has the same eigenvalue (i6D)2 = λ2
n but has the opposite

chirality. Hence,∗

i6Dψn,L = eiφnλnψn,R, i6Dψn,R = e−iφnλnψn,L. (11)

Therefore, the same eigenvalue λ2
n is shared between two chiralities, except

for when the eigenfunction is annihilated by i6D. Namely that the zero modes
may not be paired, while non-zero modes are always paired. The eigenvalues
of the Dirac opearator (without the square) are ±λn given by the eigenfunc-
tions ψn,L ± eiφnψn,R:

i6D(ψn,L ± eiφnψn,R) = eiφnλnψn,R ± eiφne−iφnλnψn,L = ±λn(ψn,L ± eiφnψn,R).
(12)

As you vary the gauge field continuously, paired eigenstates may acciden-
tally come down to zero. Yet the difference in the number of zero modes
beween two chiralities does not change by this accidental pair of zero mode.
We define the Dirac index

index i6D = n0
R − n0

L (13)

where n0
L (n0

R) is the number of left-handed (right-handed) zero modes. The
index does not change by a continuous variation of the gauge field and hence

∗The relative phase can be removed by choosing an appropriate basis for eigenfunctions
for a particular background gauge field, but there may be a reason why it may not be
possible for a continuous variation of the gauge field. We will come back to this question
when we discuss the gauge anomalies.
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Figure 1: The structure of the eigenvalues of the Dirac operator. The non-
zero modes are all paired between two chiralities, while the zero modes do not
have to be paired. A pair may accidentally come to zero under continuous
variation of the background gauge field as shown on the right, but the index
does not change and is hence a topological invariant.

is a topological invariant. For the later purposes, we also write the index as

index i6D = Tr γD+1e
−(i6D)2/M2

≡
∑

n,±

∫

dDxψ
†
n,±(x)γD+1e

−(i6D)2/M2

ψn,±(x) =
∑

n,±

±e−λ
2
n/M

2

. (14)

Here, Tr refers to the trace over the space of all eigenfunctions as well as
the Dirac and/or gauge indices. We use the notation tr for the trace over
the Dirac and/or gauge indices alone. In this expression, the eigenmodes
contribute with the opposite signs for the left-handed and right-handed chi-
ralities due to the factor of γD+1, and they all cancel for non-zero modes
because of the pairing. For the zero modes, however, the index remains.
Note that the result is independent of the regular mass M .

The book shows in Section 19.2 how to compute this quantity in the limit
M → ∞. Eq. (19.74) holds in any dimensions,

(i6D)2 = −γµγνDµDν = −
1

2
(gµν + [γµ, γν ])DµDν = −D2 +

1

2
σµνFµν (15)

with σµν = i
2
[γµ, γν ]. Repeating the same calcuation in arbitrary even di-

mensions D = 2n, the equivalent of Eq. (19.75) is

lim
M→∞

TrγD+1e
−(i6D)2/M2
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=

∫

dDx lim
M→∞

tr

[

γD+1
1

n!

(

1

2M2
σµνFµν

)n]

〈x|e∂
2/M2

|x〉. (16)

The latter factor is

〈x|e∂
2/M2

|x〉 =

∫

dDk

(2π)D
e−k

2/M2

=
MD

(4π)n
. (17)

For the first factor, we find

tr

[

γD+1
1

n!

(

1

2M2
σµνFµν

)n]

=
1

n!

1

2nMD
tr[γD+1σ

µ1µ2 · · ·σµD−1µD ]tr[Fµ1µ2
· · ·FµD−1µD

]

=
1

n!

1

MD
(−1)nǫµ1µ2···µD−1µDtr[Fµ1µ2

· · ·FµD−1µD
]. (18)

Putting them together,

index i6D = lim
M→∞

TrγD+1e
−(i6D)2/M2

=

∫

dDx
1

n!

(−1)n

(4π)n
ǫµ1µ2···µD−1µDtr[Fµ1µ2

· · ·FµD−1µD
]

=
1

n!

(−1)nin

(2π)n

∫

tr[F ∧ · · · ∧ F ] =
1

n!

(−i)n

(2π)n

∫

trF n. (19)

The last expression is an integral of the Chern character

ch(F ) = tre−iF/2π, (20)

picking the piece appropriate for the given dimension. This result is a special
case of the general theorem called the Atiyah–Singer index theorem, which
states that the analytical index (index i6D in this case) is the same as the
topological index (the integral of the the Chern character in this case).

2 Topological Index

The topological index
1

n!

(−i)n

(2π)n

∫

M

trF n (21)
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is an integer and it is a topological invariant as the name suggests. What it
means is that it does not change under the continuous variation of the gauge
field. Knowing this result, the reason is obvious; the analytical index is by
definition an integer and does not change under the continuous variation of
the gauge field. But how do we see it on the topological index directly?

One important point is that the Chern class does not depend on the metric
of the manifold, and therefore does not rely on the differential structure (how
jagged the sphere is, how much it is elongated, etc). Another important point
is that it is a total derivative and depends only on the boundary condition
(if on open space). We find, for example,

trF 2 = dω3(A) = dtr

(

AdA+
2

3
A3

)

, (22)

trF 3 = dω5(A) = dtr

(

A(dA)2 +
3

2
A3dA+

3

5
A5

)

. (23)

These ω2n+1’s are caled Chern-Simon terms.† They appear, for example, in
the study of quantum Hall effects and three-dimensional QED with massive
fermions.

We would like to see what the topological index is on a compact man-
ifold such as a four-dimensional sphere S4. For this purpose, we cover the
S4 with two patches, one covering the northern hemisphere and the other
the southern one, and they overlap along the equator which is nothing but
a three-dimensional sphere S3. In general, when two patches are glued to-
gether, you need to perform a gauge transformation to connect them because
they may be described in two different gauges. Such a gauge transformation
is called the transition function in the theory of fibre bundles, a terminology
in mathematics that basically refers to a general gauge theory. Our gauge
field is their connection, our field strength is their curvature. The integral
of trF 2 on the northern hemisphere is given by the Chern-Simon term on its
boundary, namely on the equator S3. Similarly the integral on the south-
ern hemisphere is also given by the Chern-Simon term on S3, but with the

†For general n, you can use the trick called “descent equations” invented our
own Bruno Zumino, discussed in his Les Houches 1983 lectures, and also in
Bruno Zumino, Wu Yong-Shi, and A. Zee, Nucl. Phys. B 239, 477 (1984), to work out
explicit expressions for the Chern–Simon terms.
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opposite orientation. Therefore,
∫

S4

−1

8π2
trF 2 =

∫

S4
north

−1

8π2
trF 2 +

∫

S4
south

−1

8π2
trF 2

=

∫

S3

−1

8π2
ω3(Anorth) −

∫

S3

−1

8π2
ω3(Asouth). (24)

Because Asouth is related to Anorth by a gauge transformation

Asouth = g−1dg + g−1Anorthg, (25)

we only need to know
∫

S4

−1

8π2
trF 2 =

∫

S3

−1

8π2

[

ω3(Anorth) − ω3(g
−1dg + g−1Anorthg)

]

. (26)

We will show below that it is given simply by

=
1

24π2

∫

S3

tr(g−1dg)3, (27)

and hence it depends only on the gauge transformation on the equator. We
will also see later that this is in fact an integer.

The difference between two ω3’s on the equator is easy to work out. From
this point on, we use the notation A = Anorth, A

g = Asouth = g−1dg+g−1Ag.‡

We first work out

dAg = d(g−1dg + g−1Ag)

= −(g−1dg)2 − g−1dgg−1Ag + g−1dAg − g−1Agg−1dg

= −(g−1dg)2 − {g−1Ag, g−1dg} + g−1dAg. (28)

Note that we used dg−1 = −g−1dgg−1 which can be proven using 0 =
d(g−1g) = (dg−1)g + g−1dg. Now using the definition of the Chern–Simon
term,

ω3(A
g) = tr

(

AgdAg +
2

3
Ag3
)

= tr

(

AgF g −
1

3
Ag3
)

= tr

(

(g−1dg + g−1Ag)g−1Fg −
1

3
(g−1dg + g−1Ag)3

)

‡I’m a northern hemisphere supremacist. Sorry, Aussies!
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= tr

(

dgg−1F + AF −
1

3
(g−1dg)3 − (dgg−1)2A− dgg−1A2 −

1

3
A3

)

= ω3(A) + tr

(

dgg−1F −
1

3
(g−1dg)3 + dgdg−1A− dgg−1A2

)

= ω3(A) −
1

3
tr(g−1dg)3 + tr

(

dgg−1dA+ dgdg−1A
)

= ω3(A) −
1

3
tr(g−1dg)3 − dtr

(

dgg−1A
)

. (29)

Note that the latter two terms are closed. This is obvious for the last term
because it is exact. For the middle term,

dtr(g−1dg)3 = −dtrg−1dgdg−1dg

= −trdg−1dgdg−1dg = −tr(g−1dg)4 = +tr(g−1dg)4 = 0. (30)

In the last step, we used the cyclic property of the trace and the anti-
commutation among odd-forms to show that it vanishes. The fact that the
difference ω3(A

g)−ω3(A) is closed is expected because of the gauge invariance
of trF 2,

dω3(A
g) = tr(F g)2 = tr(g−1Fg)2 = trF 2 = dω3(A). (31)

The exact piece dtr(dgg−1A) vanishes upon integration on S3 because S3 is
closed. On the other hand,

N =
1

24π2

∫

S3

tr(g−1dg)3 (32)

is the winding number of the map from S3 to the group.
Any simple group contains an SU(2) subgroup. Topologically, SU(2) is

nothing but a three-dimensional sphere S3. This can be seen easily as follows.
Any SU(2) matrix can be written as

g(a) = a0 + i~σ · ~a, (33)

where the determinant is detg(a) = a2
0 + ~a2 = 1. The unitarity is easy

to verify with this expression. Therefore, the space of all SU(2) matrices
can be parameterized by a four-dimensional unit vector (a0,~a), nothing but
S3. Just like a rubber band S1 can wrap around a water bottle, an S3

(the equator) can wrap around the S3 (the group) and you can count the
number of times it wraps around. Clearly such a number is a topological
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number, independent of details (how much the rubber band is stretched, if
the stretch is non-uniform, etc). Indeed, using the obvious map (a0,~a) =
(cos θ, sin θ sinχ cosφ, sin θ sinχ sinφ, sin θ cosχ) where θ, χ, and φ are the
coordinates of S3, we have

g1 = cos θ + i sin θ

(

cosχ sinχe−iφ

sinχeiφ − cosχ

)

. (34)

We can easily work out the integral and find

N =
1

24π2

∫

S3

tr(g−1
1 dg1)

3 =
1

24π2

∫

S3

12 sin2 θ sinχdθ ∧ dχ ∧ dφ

=
1

2π2

∫ π

0

sin2 θdθ

∫ π

0

sinχdχ

∫ 2π

0

dφ = 1. (35)

If we had used instead gn = gn1 , we find N = n.
In fact, mathematicians classify continuous maps from Sn to a manifold

M using the homotopy group πn(M). If two maps can be continuously
deformed to each other, you identify them. Each element of πn(M) refers
to a class of maps under this identification. For any simple groups G, it is
known that

π3(G) = Z. (36)

Namely any maps from S3 to a simple group G can be classified according
to the winding number. A representative map is given by the above gn
embedded into SU(2) ⊂ G.

This way, the topological index determines the topology of the fibre bun-
dle, namely it classifies how non-trivial the gauge field is.

3 Chiral Anomaly

Classically, massless Dirac Lagrangians in even dimensions coupled to the
gauge field are invariant under the global chiral rotation ψ′ = eiαγD+1ψ. This
is because

ψ̄i6Dψ → ψ†e−iαγD+1γ0i6DeiαγD+1ψ = ψ†γ0i6Dψ = ψ̄i6Dψ. (37)

Correspondingly, the axial current is classically conserved,

∂µj
µ
A = ∂µ(ψ̄γ

µγD+1ψ) = 0. (38)
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To derive the Ward identity for the axial current, we can use the path
integral with a local axial transformation

ψ′(x) = eiα(x)γD+1ψ(x). (39)

Under this transformation, the Lagrangian density does change,

ψ̄′i6Dψ′ = ψ̄eiαγD+1i6DeiαγD+1ψ = ψ̄iγµ∂µ(iα)γD+1ψ = −(∂µα)ψ̄γµγD+1ψ.

(40)
In the path integral, the fermion field is a dummy integration variable and
we can replace ψ by ψ′,

∫

DψDψ̄ei
R

dDxψ̄i6Dψ

=

∫

Dψ′Dψ̄′ exp

[

i

∫

dDxψ̄′i6Dψ′

]

=

∫

Dψ′Dψ̄′ exp

[

i

∫

dDx(ψ̄i6Dψ − (∂µα)jµA)

]

=

∫

Dψ′Dψ̄′ei
R

dDxψ̄i6Dψ

[

1 − i

∫

dDx(∂µα)jµA +O(α)2

]

. (41)

If we assume that the measure does not change under the change of variable
Dψ′Dψ̄′ = DψDψ̄, we conclude

∫

DψDψ̄ei
R

dDxψ̄i6Dψ∂µj
µ
A = 0 (42)

after an integration by parts because α(x) is arbitrary.
The question is if the measure is indeed invariant under the chiral rotation.

Naively it is, because

Dψ′ = DeiαγD+1ψ = Dψ
[

det eiαγD+1
]−1

= Dψe−iTrα(x)γD+1 . (43)

Note that the Jacobian for Grassmann integral is the opposite from the or-
dinary ones. In the end, the exponent of the Jacobian is proportional to
trγD+1 = 0, and hence the Jacobian is unity. However, there is a subtlety.
What multiplies trγD+1 is Trα(x) =

∫

dDx〈x|α(x)|x〉 =
∫

dDxα(x)δ(x−x) =
∞. Therefore, the exponent is actually ∞×0, and we have to carefully eval-
uate it.
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For this purpose, we switch to the Euclidean path integral. One point
you have to be careful about in the Euclidean case is that we do not regard
ψ̄ = ψ†γ0; we simply deal with ψ and ψ̄ as independent integration variable.
This is because the Euclidean rotation SO(D) is a compact group and is
represented by unitary matrices on the spinors. Therefore, we should not
put γ0 in the definition of ψ̄; the SO(D) transformation of ψ̄ is the same
as ψ† so that the Lagrangian is SO(D) invariant. On the other hand, the
chiral rotations of ψ̄ need to be kept the same way as in the Minkowski case
ψ → eiαγD+1ψ and ψ̄ → ψ̄eiαγD+1 so that the classical Lagrangian is invariant
under the global chiral rotations. These two requirements are incompatible
if we try to identify ψ̄ = ψ† or ψ†γ0.

The classical action splits into two chiralities,

ψ̄i6Dψ = ψ̄Li6DψR + ψ̄Ri6DψL. (44)

The chiral rotation is

ψ′
R = eiαψR, ψ′

L = e−iαψL, ψ̄′
R = eiαψ̄R, ψ̄′

L = e−iαψ̄L, (45)

so that the classical Lagrangian is invariant for a constant α. Using the
eigenmodes of (i6D)2 we discussed in the earlier section, we can expand the
field

ψR =
∑

n

ψn,Ran, ψL =
∑

n

ψn,Lbn,

ψ̄R =
∑

n

ψ
†
n,Rān, ψ̄L =

∑

n

ψ
†
n,Lb̄n. (46)

Note again ān 6= (an)
†. Assume for definiteness that index i6D = k > 0, so

that we have n zero modes for ψR and ψ̄R, and no zero modes for ψL and
ψ̄L. Then the path integral measure is simply

DψRDψLDψ̄RDψ̄L =

(

∏

n 6=0

dandbndāndb̄n

)

da1
0 · · ·da

k
0dā

1
0 · · · dā

k
0. (47)

Under the global chiral rotation ψ → eiαγD+1ψ, an and bn pick up the opposite
phases and the Jacobians cancel for each pair. However the zero modes are
not paired because of the non-zero index and hence

Dψ′
LDψ

′
RDψ̄

′
LDψ̄

′
R = DψLDψRDψ̄LDψ̄Re

−2ikα. (48)

10



Therefore, the measure is not invariant due to the mismatch between the
left- and right-handed chirality modes. Because the cancellation of Jacobians
between left and right is guaranteed for non-zero modes by the pairing, this
result is exact for a global chiral rotation.

For local chiral rotations, what we need is the exponent of the Jacobian

lim
M→∞

Trα(x)γD+1e
−(i6D)2/M2

. (49)

Even though we computed this quantity for a constant α earlier, the com-
putation did not depend on the actual form of α(x) in the M → ∞ limit.
Therefore, we find

lim
M∞

Trα(x)γD+1 =
1

n!

(−i)n

(2π)n

∫

α(x)trF n. (50)

Using this result, the measure changes as

Dψ′Dψ̄′ = DψDψ̄ exp

[

−2i
1

n!

(−i)n

(2π)n

∫

α(x)trF n

]

. (51)

Note that the case for a global chiral rotation is given precisely by the topo-
logical index, reducing back to Eq. (??).

Therefore the Ward identity now includes the anomalous violation of
chiral symmetry

∫

DψDψ̄ei
R

dDxψ̄i6Dψ

=

∫

Dψ′Dψ̄′ei
R

dDxψ̄i6Dψ

[

1 −

∫

dDx(∂µα)jµA +O(α)2

]

=

∫

DψDψ̄

[

1 − 2i
1

n!

(−i)n

(2π)n

∫

α(x)trF n +O(α2)

]

ei
R

dDxψ̄i6Dψ

[

1 − i

∫

dDx(∂µα)jµA +O(α)2

]

, (52)

and hence
∫

DψDψ̄ei
R

dDxψ̄i6Dψ

[

−2i
1

n!

(−i)n

(2π)n

∫

α(x)trF n − i

∫

dDx(∂µα)jµA

]

= 0.

(53)
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The current conservation is now violated,§

∂µj
µ
A = 2

1

n!

(−1)n

(4π)n
ǫµ1µ2···µD−1µDtr(Fµ1µ2

· · ·FµD−1µD
). (54)

Because the normalization of the r.h.s. is fixed by its integral which is sup-
posed to be an integer, there cannot be a renormalization of the r.h.s. due
to higher orders in perturbation theory. It is believed, therefore, that this
equation is exact to all orders in perturbation theory(Adler–Bardeen theo-
rem). This point is important because we use this equation to compute the
π0 → γγ decay amplitude which is subject to corrections due to the gluon
exchange at low momenta in the triangle diagram.

We now interpret the result as a non-conservation of the chiral current in
the Minkowski space. The zero mode in the Euclidean space corresponds to
the level-crossing in the Minkowski space. Using the topological invariance,
we can open up Sn to R

n as long as the field strength dies sufficiently fast
F → 0 at the boundary so that F n remains integrable. We choose the
gauge AD = 0 along the direction xD which we rotate to the Minkowski time
τ = xD = it. The zero mode equation is then

i
[

γD∂τ + γiDi

]

ψ0 = 0. (55)

Here, i = 1, · · · , D−1. Let us assume that the gauge field Ai has a very slow
dependence on τ so that we can integrate this equation using the adiabatic
approximation. Namely that we can use the instantaneous eigenvalues

γDγiDiψ0 = E(τ)ψ0. (56)

Note that iγDγi is hermitean, as well as −iDi. The zero-mode equation can
then be written as

∂τψ0 + E(τ)ψ0 = 0, (57)

and hence
ψ0(τ) = ψ0(0)e−

R

τ

0
dτ ′E(τ ′). (58)

The only way the zero mode can be normalizable is when

lim
τ→∞

E(τ) > 0, lim
τ→−∞

E(τ) < 0, (59)

§I haven’t identified the source of the opposite sign from Eq. (19.80) in the book.
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namely the level crosses zero. In the Minkowski space, it corresponds to an
energy level that is originally in the Dirac sea as one of the negative energy
solutions and hence is occupied but sticks above the Dirac sea in the future
with a positive energy. Therefore the Dirac zero mode in the Euclidean space
gives the appearance of a fermion and hence changes the fermion number for
one of the chiralities. There is no corresponding zero mode for the opposite
chirality in the Euclidean space because of the lack of pairing for the zero
modes, but it simply corresponds to the non-normalizable mode whose energy
goes from positive to negative instead. This is how the chiral current is not
conserved, where the amount of non-conservation is given by twice the index.

4 Gauge Anomaly

5 Global Anomaly

6 Gravitational Anomaly
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