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Problem 11.1

(a)

The free scalar field theory is defined by the path integral

Z =

∫

Dφ(x)ei
R

dDx[ 1
2
∂µφ∂µφ− 1

2
m2φ2]. (1)

Any vacuum expectation value of a time-ordered product of operators is given
in terms of the path integral

〈0|TO1(x1) · · ·On(xn)|0〉 =
1

Z

∫

Dφ(x)ei
R

dDx[ 1
2
∂µφ∂µφ− 1

2
m2φ2]O1(x1) · · ·On(xn).

(2)
The correlation function in the problem is therefore

〈0|Teiφ(y)e−iφ(z)|0〉 =
1

Z

∫

Dφ(x)ei
R

dDx[ 1
2
∂µφ∂µφ− 1

2
m2φ2]eiφ(y)e−iφ(z). (3)

(I’ve changed the arguments to y and z for later convenience.) Note that it
can be rewritten in terms of a source J(z)

〈0|Teiφ(y)e−iφ(z)|0〉 =
1

Z

∫

Dφ(x)ei
R

dDx( 1

2
∂µφ∂µφ− 1

2
m2φ2+J(x)φ(x)), (4)

where
J(x) = δD(x− y) − δD(x− z). (5)

This is the path integral worked out in Section 9.2 of Peskin–Schroeder.
Namely, we rewrite the action as (“complete the square”)

S =

∫

dDx

[

1

2
∂µφ∂

µφ− 1

2
m2φ2 + Jφ

]

=

∫

dDx

[

−1

2
φ(∂µ∂

µ +m2)φ+ Jφ

]
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=

∫

dDx

[

−1

2

(

φ− (∂2 +m2)−1J
)

(∂2 +m2)
(

φ− (∂2 +m2)−1J
)

+
1

2
J(∂2 +m2)−1J

]

. (6)

In the second line, we integrated the Lagrangian by parts and dropped the
surface terms assuming all local fields damp at the infinity. Note that the
formal expression (∂2 +m2)−1 means

(∂2 +m2)−1J(x) =

∫

dDyiDF (x− y)J(y), (7)

with the Feynman propagator

DF (x− y) =

∫

dDk

(2π)D

ie−ik·(x−y)

k2 −m2 + iǫ
. (8)

Shifting the integration variable

φ→ φ+ (∂2 +m2)−1J, (9)

the path integral becomes

1

Z

∫

Dφ(x)ei
R

dDx( 1

2
∂µφ∂µφ− 1

2
m2φ2+ 1

2
J(∂2+m2)−1J) = ei

R

dDx 1

2
J(∂2+m2)−1J . (10)

Now recalling Eq. (5), the exponent is

i

∫

dDx
1

2
J(∂2 +m2)−1J = i

∫

dDxdDw
1

2
J(x)iDF (x− w)J(w)

= −1

2
(DF (y − y) −DF (y − z) −DF (z − y) +DF (z − z))

= DF (y − z) −DF (0). (11)

Therefore, we find

〈0|Teiφ(y)e−iφ(z)|0〉 = eDF (y−z)−DF (0) (12)

as desired.
Other ways of showing this result are substantially more complicated. One way is to

write the field operators in terms of creation and annihilation operators. Because this is
a free field theory, we can write φ(x) = φ+(x) + φ−(x), with

φ+(x) =

∫

dD−1~p

(2π)D−12E(p)
a(p)e−i(E(p)x0−~p·~x), φ−(x) = φ+(x)†. (13)
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Here, E(p) =
√

~p2 + m2. It is important to know their commutator,

[φ+(x), φ−(y)]

=

∫

dD−1~p

(2π)D−12E(p)

dD−1~q

(2π)D−12E(q)
[a(p)e−i(E(p)x0−~p·~x), a†(q)ei(E(q)y0−~q·~y)]

=

∫

dD−1~p

(2π)D−12E(p)
e−i(E(p)(x0−y0)−~p·(~x−~y)) = D+(x − y). (14)

Note (D+(x− y))∗ = D+(y− x). More importantly, it is a number, not an operator. This
point allows us to use the Campbell–Baker–Hausdorff formula

eXeY = eX+Y + 1
2
[X,Y ] (15)

if [X, [X, Y ]] = [Y, [X, Y ]] = 0. Therefore, we find

eiφ(x) = eiφ−(x)eiφ+(x)e
1
2
[φ−(x),φ+(x)] = eiφ−(x)eiφ+(x)e−

1
2
D+(0). (16)

Similarly,

e−iφ(y) = e−iφ−(y)e−iφ+(y)e
1
2
[φ−(y),φ+(y)] = e−iφ−(y)e−iφ+(y)e−

1
2
D+(0). (17)

Then the problem is to work out

〈0|Teiφ(x)e−iφ(y)|0〉 = 〈0|Teiφ−(x)eiφ+(x)e−iφ−(y)e−iφ+(y)|0〉e−D+(0). (18)

Now we study two possible time orderings separately. For x0 > y0,

〈0|Teiφ(x)e−iφ(y)|0〉 = 〈0|eiφ(x)e−iφ(y)|0〉
= 〈0|eiφ−(x)eiφ+(x)e−iφ−(y)e−iφ+(y)|0〉e−D+(0) = 〈0|eiφ+(x)e−iφ−(y)|0〉e−D+(0).(19)

We used the fact that the annihilation operator annihilates the vacuum.
Recall for a harmonic oscillator, the state created by an exponential of the creation

operator is a coherent state

|f〉 = efa† |0〉 =

∞
∑

n=0

fn

√
n!
|n〉, (20)

whose normalization is

〈g|f〉 = 〈0|eg∗aefa† |0〉 =

∞
∑

m,n=0

〈m| g∗m

√
m!

fn

√
n!
|n〉 = eg∗f . (21)

Our case at hand is a straight-forward generalization,

〈0|Teiφ(x)e−iφ(y)|0〉 = 〈0|eiφ+(x)e−iφ−(y)|0〉e−D+(0)

= exp

[
∫

dD−1~p

(2π)D−12E(p)
(ie−i(E(p)x0−~p·~x))(−iei(E(p)y0−~p·~y))

]

e−D+(0)

= eD+(x−y)−D+(0). (22)
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For the other time ordering x0 < y0, we find

〈0|Teiφ(x)e−iφ(y)|0〉 = 〈0|e−iφ+(x)eiφ−(x)|0〉e−D+(0) = eD+(y−x)−D+(0). (23)

Putting the two cases together,

〈0|Teiφ(x)e−iφ(y)|0〉 = θ(x0 − y0)eD+(x−y)−D+(0) + θ(y0 − x0)eD+(y−x)−D+(0). (24)

Now we have to relate D+(x − y) and DF (x − y). Using the definition of the Feynman
propagator, we find

DF (x − y) =

∫

dDp

(2π)D

ie−ip·(x−y)

p2 − m2 + iǫ

=

∫

dE

2π

dD−1~p

(2π)D−1

ie−iE(x0−y0)+i~p·(~x−~y)

(E − E(p) + iǫ)(E + E(p) − iǫ)

= θ(x0 − y0)

∫

dD−1~p

(2π)D−1

e−iE(p)(x0−y0)+i~p·(~x−~y)

2E(p)

−θ(y0 − x0)

∫

dD−1~p

(2π)D−1

e−iE(p)(y0−x0)+i~p·(~x−~y)

−2E(p)

= θ(x0 − y0)

∫

dD−1~p

(2π)D−1

e−iE(p)(x0−y0)+i~p·(~x−~y)

2E(p)

+θ(y0 − x0)

∫

dD−1~p

(2π)D−1

e−iE(p)(y0−x0)+i~p·(~y−~x)

2E(p)

= θ(x0 − y0)D+(x − y) + θ(y0 − x0)D+(y − x). (25)

Therefore, Eq. (24) is simply

〈0|Teiφ(x)e−iφ(y)|0〉 = eDF (x−y)−DF (0). (26)

The other way is to expand the exponential in Taylor series and use Wick’s theorem
to compute each term. This is probably the first one that comes to mind, but it is very
complicated. We first Taylor expand the exponentials,

〈0|Teiφ(x)e−iφ(y)|0〉 =
∞
∑

n,m=0

in(−i)m

n!m!
〈0|Tφ(x)nφ(y)m|0〉. (27)

First of all, n + m must be even to get a non-vanishing correlation function. Therefore,
either both n and m are even, or both odd.

Let us look at the case n = 2k ≥ m = 2l. We can contract 2j pairs between φ(x)
and φ(y). There are 2kC2j 2lC2j (2j)! choices for this. The remaining 2k − 2j φ(x)’s are
contracted among each other, with (2k − 2j)!/(2!)k−j/(k − j)! ways of dividing them up
into pairs. Similarly there are (2l − 2j)!/(2!)l−j/(l − j)! ways to divide up 2l − 2j φ(y)’s
into l − j pairs. Therefore,

〈0|Tφ(x)2kφ(y)2l|0〉
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=

l
∑

j=0

2kC2j 2lC2j(2j)!
(2k − 2j)!

(2!)k−j(k − j)!

(2l − 2j)!

(2!)l−j(l − j)!
DF (x − x)k−jDF (x − y)2jDF (y − y)l−j

=

l
∑

j=0

(2k)!(2l)!

(2j)!2k+l−2j(k − j)!(l − j)!
DF (x − x)k−jDF (x − y)2jDF (y − y)l−j . (28)

When n = 2k ≤ m = 2l, we just switch l and k, or change the sum to min(k, l). On
the other hand, when n = 2k + 1 ≥ m = 2l + 1, we contract 2j + 1 pairs between φ(x)
and φ(y). There are 2k+1C2j+1 choices for this, with (2k − 2j)!/(2!)k−j/(k − j)! ways of
dividing up the remaining φ(x) into pairs, and (2l − 2j)!/(2!)l−j/(l − j)! for pairing φ(y).
Therefore,

〈0|Tφ(x)2k+1φ(y)2l+1|0〉

=

l
∑

j=0

2k+1C2j+1 2l+1C2j+1 (2j + 1)!
(2k − 2j)!

(2!)k−j(k − j)!

(2l − 2j)!

(2!)l−j(l − j)!

DF (x − x)k−jDF (x − y)2j+1DF (y − y)l−j

=
l
∑

j=0

(2k + 1)!(2l + 1)!

(2j + 1)!2k+l−2j(k − j)!(l − j)!
DF (x − x)k−jDF (x − y)2j+1DF (y − y)l−j .

(29)

Going back to the correlation function, we find

〈0|Teiφ(x)e−iφ(y)|0〉

=

∞
∑

k,l=0

min(k,l)
∑

j=0

(−1)k+l

(2j)!2k+l−2j(k − j)!(l − j)!
DF (x − y)2jDF (0)k+l−2j

+
∞
∑

k,l=0

min(k,l)
∑

j=0

(−1)k+l

(2j + 1)!2k+l−2j(k − j)!(l − j)!
DF (x − y)2j+1DF (0)l+k−2j . (30)

For the sum over k and l, it can be reexpressed as a sum over p = k + l and k,

〈0|Teiφ(x)e−iφ(y)|0〉

=

∞
∑

p=0

p
∑

k=0

min(k,p−k)
∑

j=0

(−1)p

(2j)!(2!)p−2j(k − j)!(p − k − j)!
DF (x − y)2jDF (0)p−2j

+

∞
∑

p=0

p
∑

k=0

min(k,p−k)
∑

j=0

(−1)p

(2j + 1)!(2!)p−2j(k − j)!(p − k − j)!
DF (x − y)2j+1DF (0)p−2j

(31)

We need to further separate different cases. In the first line in the r.h.s. of Eq. (31),
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when p = 2q is even,
p
∑

k=0

min(k,p−k)
∑

j=0

=

q
∑

j=0

2q−j
∑

k=j

=

q
∑

j=0

2q−2j
∑

m=0

. (32)

At the last step, we defined m = k − j. Therefore, the sum is

p
∑

k=0

min(k,p−k)
∑

j=0

(−1)p

(2j)!(2!)p−2j(k − j)!(p − k − j)!
DF (x − y)2jDF (0)p−2j

=

q
∑

j=0

2q−2j
∑

m=0

1

(2j)!22q−2jm!(2q − 2j − m)!
DF (x − y)2jDF (0)2q−2j

=

q
∑

j=0

1

(2j)!22q−2j(2q − 2j)!
DF (x − y)2jDF (0)2q−2j

2q−2j
∑

m=0

2q−2jCm

=

q
∑

j=0

1

(2j)!(2q − 2j)!
DF (x − y)2jDF (0)2q−2j . (33)

Similarly for the last line in Eq. (31),

p
∑

k=0

min(k,p−k)
∑

j=0

(−1)p

(2j + 1)!(2!)p−2j(k − j)!(p − k − j)!
DF (x − y)2j+1DF (0)p−2j

=

q
∑

j=0

2q−2j
∑

m=0

1

(2j + 1)!22q−2jm!(2q − 2j − m)!
DF (x − y)2j+1DF (0)2q−2j

=

q
∑

j=0

1

(2j + 1)!22q−2j(2q − 2j)!
DF (x − y)2j+1DF (0)2q−2j

2q−2j
∑

m=0

2q−2jCm

=

q
∑

j=0

1

(2j + 1)!(2q − 2j)!
DF (x − y)2j+1DF (0)2q−2j . (34)

On the other hand, when p = 2q + 1 is odd,

p
∑

k=0

min(k,p−k)
∑

j=0

=

q
∑

j=0

2q+1−j
∑

k=j

=

q
∑

j=0

2q+1−2j
∑

m=0

. (35)

At the last step, we again defined m = k − j. Therefore, the sum is

p
∑

k=0

min(k,p−k)
∑

j=0

(−1)p

(2j)!(2!)p−2j(k − j)!(p − k − j)!
DF (x − y)2jDF (0)p−2j

=

q
∑

j=0

2q+1−2j
∑

m=0

−1

(2j)!22q+1−2jm!(2q + 1 − 2j − m)!
DF (x − y)2jDF (0)2q+1−2j
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=

q
∑

j=0

−1

(2j)!22q+1−2j(2q + 1 − 2j)!
DF (x − y)2jDF (0)2q+1−2j

2q+1−2j
∑

m=0

2q+1−2jCm

=

q
∑

j=0

−1

(2j)!(2q + 1 − 2j)!
DF (x − y)2jDF (0)2q+1−2j . (36)

Similarly for the last line in Eq. (31),

p
∑

k=0

min(k,p−k)
∑

j=0

(−1)p

(2j + 1)!(2!)p−2j(k − j)!(p − k − j)!
DF (x − y)2j+1DF (0)p−2j

=

q
∑

j=0

2q+1−2j
∑

m=0

−1

(2j + 1)!22q+1−2jm!(2q + 1 − 2j − m)!
DF (x − y)2j+1DF (0)2q+1−2j

=

q
∑

j=0

−1

(2j + 1)!22q+1−2j(2q + 1 − 2j)!
DF (x − y)2j+1DF (0)2q+1−2j

2q+1−2j
∑

m=0

2q+1−2jCm

=

q
∑

j=0

−1

(2j + 1)!(2q + 1 − 2j)!
DF (x − y)2j+1DF (0)2q+1−2j . (37)

Putting all four contributions together, Eq. (31) is

〈0|Teiφ(x)e−iφ(y)|0〉

=

∞
∑

q=0

q
∑

j=0

[

DF (x − y)2jDF (0)2q−2j

(2j)!(2q − 2j)!
+

DF (x − y)2j+1DF (0)2q−2j

(2j + 1)!(2q − 2j)!

−DF (x − y)2jDF (0)2q+1−2j

(2j)!(2q + 1 − 2j)!
− DF (x − y)2j+1DF (0)2q+1−2j

(2j + 1)!(2q + 1 − 2j)!

]

. (38)

In Eq. (38), the second and third terms give

q
∑

j=0

[

DF (x − y)2j+1DF (0)2q−2j

(2j + 1)!(2q − 2j)!
− DF (x − y)2jDF (0)2q+1−2j

(2j)!(2q + 1 − 2j)!

]

=

2q+1
∑

2j+1=1

DF (x − y)2j+1DF (0)2q+1−(2j+1)

(2j + 1)!(2q + 1 − (2j + 1))!
−

2q
∑

2j=0

DF (x − y)2jDF (0)2q+1−2j

(2j)!(2q + 1 − 2j)!

=

2q+1
∑

n=0

(−1)2q+1−nDF (x − y)nDF (0)2q+1−n

n!(2q + 1 − n)!

=
1

(2q + 1)!
(DF (x − y) − DF (0))2q+1. (39)

The first term in Eq. (38) has the total power in propagator of 2q, while the fourth term
2q + 2. Therefore, we separate out the term q = 0 in the first term, which is 1. Then we
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rewrite the rest with q → q + 1,

q+1
∑

j=0

DF (x − y)2jDF (0)2q+2−2j

(2j)!(2q + 2 − 2j)!
−

q
∑

j=0

DF (x − y)2j+1DF (0)2q+1−2j

(2j + 1)!(2q + 1 − 2j)!

=

2q+2
∑

n=0

(−1)2q+2−nDF (x − y)nDF (0)2q+2−n

n!(2q + 2 − n)!

=
1

(2q + 2)!
(DF (x − y) − DF (0))2q+2. (40)

Adding all contributions, we now find Eq. (38) is

〈0|Teiφ(x)e−iφ(y)|0〉

= 1 +

∞
∑

q=0

[

1

(2q + 1)!
(DF (x − y) − DF (0))2q+1 +

1

(2q + 2)!
(DF (x − y) − DF (0))2q+2

]

= eDF (x−y)−DF (0) (41)

as desired.

(b)

Because of the symmetry requirement under the transformation φ(x) →
φ(x) − α, the only way to write an invariant that does not change under
a constant shift is to take the derivative

~∇φ(x) → ~∇(φ(x) − α) = ~∇φ(x). (42)

Because of the rotational symmetry of space, the derivatives need to be com-
bined in the form (~∇φ)2. In two spatial dimensions, a possible alternative is
ǫij∇iφ∇jφ, but this vanishes due to the anti-symmetry. Higher order invari-

ants under rotation include [(~∇φ)2]2 etc, but they are non-renormalizable.
Therefore, the only possible renormalizable Lagrangian under the global sym-
metry of spin and rotation of space is the form given in the problem, namely

∫

dDx
1

2
ρ(~∇φ)2. (43)

(c)

The field s(x) = Aeiφ(x) is the density of spins, and the natural size is given
by A = ξ~/aD where a is the lattice constant and ξ = O(1) is a numerical
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dimensionless constant of order unity. (I set ~ = 1 below.) On the other
hand, the field φ is in the exponent and hence must be dimensionless, and
hence the dimension of the spin wave modulus ρ is L−D+2. We expect it to
be proportional to a−(D−2). In the case of the Heisenberg model, we have
found ρ = j2βJ/aD−2.

The Feynman propagator for a massless scalar field in Euclidean D di-
mensions with the canonical kinetic term

∫

dDx
1

2
(~∇φ)2 (44)

is worked out most easily with the Feynman parameter

DF (x) =

∫

dDp

(2π)D

e−ip·x

p2

=

∫

dDp

(2π)D

∫ ∞

0

dt e−tp2

e−ip·x

=

∫

dDp

(2π)D

∫ ∞

0

dt e−t(p+ix/2t)2−x2/4t

=
1

(2π)D

∫ ∞

0

dt
(π

t

)D/2

e−x2/4t

=
1

(4π)D/2

∫ ∞

0

dt

tD/2
e−x2/4t

=
1

(4π)D/2

∫ ∞

0

ds s
D
2
−2e−sx2/4

=
1

(4π)D/2

(

4

x2

)
D
2
−1

Γ

(

D

2
− 1

)

=
Γ(D

2
− 1)

4πD/2

1

(x2)
D
2
−1

. (45)

In the sixth line, we changed the integration variable t = 1/s.
For D = 2, one needs to “renormalize” the propagator. Using D = 2+2ǫ,

DF (x) =
Γ(ǫ)

4π

1

(πx2)ǫ

=
1

4π

(

1

ǫ
− γ

)

(

1 − ǫ ln πx2
)

= constant − 1

4π
ln x2. (46)
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Note that the divergent constant is common for DF (x) and DF (0) and hence
cancels when we compute the spin-spin correlation function.

In our case, the kinetic term is not canonical ∝ ρ and hence the two-point
function is changed ∝ ρ−1,

DF (x) =
1

ρ

Γ(D
2
− 1)

4πD/2

1

(x2)
D
2
−1

(D 6= 2), −1

ρ

1

4π
ln x2 (D = 2). (47)

In the expression for the spin-spin correlation function, we need to eval-
uate the propagator at the origin DF (0). The natural cutoff is again the
atomic scale and we instead use DF (a).

We now discuss each dimensions separately. In D > 2,

〈s(0)s∗(x)〉 =
c2

a2D
exp

1

ρ

Γ(D
2
− 1)

4πD/2

[

(x2)−(D
2
−1) − a−(D−2)

]

. (48)

The second term in the exponent is order unity and gives an overall numerical
constant. As the spins are separated, the x dependence disappears quickly as
power in the exponent, and the correlation function asymptotes to a constant,

〈s(0)s∗(x)〉 x2→∞−−−→ c2

a2D
exp

1

ρaD−2

Γ(D
2
− 1)

4πD/2
6= 0 (49)

signaling the order parameter of spontaneous symmetry breaking of the
SO(2) symmetry.

In D = 2,

〈s(0)s∗(x)〉 =
c2

a4
exp−1

ρ

1

4π

[

lnx2 − ln a2
]

=
c2

a4

(

x2

a2

)−1/(4πρ)

. (50)

Therefore the correlation function damps as power and hence there is no true
long-range order of spontaneous symmetry breaking of the SO(2) symmetry.
This behavior is consistent with the Mermin–Wagner theorem. Another cu-
rious fact is that the critical exponent of the correlation function

η =
1

2πρ
(51)
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varies continuously. This case is basically that there is a continuum of critical
points, a very special behavior in two dimensions.

In D = 1, the propagator is

DF (x) =
1

ρ

Γ(−1
2
)

4π1/2
|x| = −|x|

2ρ
. (52)

Therefore the spin-spin correlation function

〈s(0)s∗(x)〉 =
c2

a2
e−|x|/2ρ (53)

damps exponentially. Again, there is no long-range order but there is a finite
correlation length ξ = 2ρ.

Here is an apparent paradox. Under the U(1) ≃ SO(2) symmetry, s(x) → s(x)eiα, and
hence φ → φ + α. The correlation function 〈s(0)s∗(x)〉 is invariant under this symmetry
and hence can be (and is) non-zero. On the other hand, 〈s(0)s(x)〉 is not invariant and
hence must vanish. However, an explicit calculation shows it does not vanish. If you go
through the same calculation as in part (a), we can compute 〈0|Teiφ(y)eiφ(z)|0〉 by using
the source J(x) = δD(x − y) + δD(x − z). The result is then simply 〈0|Teiφ(y)eiφ(z)|0〉 =
eDF (y−z)+D(0) 6= 0. How can this be consistent with the argument based on symmetry
above that it should vanish?

The point is that the path integral needs to be done more carefully when the action
does not depend on the constant piece (“zero mode”) of the field, namely m = 0 for a free
field. Write φ(x) = φ0 + φ′(x), where φ′ does not contain the zero mode

∫

dDxφ′(x) = 0.
The path integral Eq. (3) can then be written as

〈0|Teiφ(y)e−iφ(z)|0〉 =
1

Z

∫

Dφ(x)ei
R

dDx[ 1
2
∂µφ∂µφ]eiφ(y)e−iφ(z)

=
1

Z

∫

dφ0Dφ′(x)ei
R

dDx[ 1
2
∂µφ′∂µφ′]ei(φ0+φ′(y))e−i(φ0+φ′(z)). (54)

In this case, φ0 cancels and the integrand does not depend on φ0 at all. Hence
∫ 2π

0 dφ0 =
2π = constant and the computation is the same as before. On the other hand,

〈0|Teiφ(y)eiφ(z)|0〉 =
1

Z

∫

Dφ(x)ei
R

dDx[ 1
2
∂µφ∂µφ]eiφ(y)eiφ(z)

=
1

Z

∫

dφ0Dφ′(x)ei
R

dDx[ 1
2
∂µφ′∂µφ′]ei(φ0+φ′(y))ei(φ0+φ′(z)). (55)

The φ0 dependence is e2iφ0 overall, and its integral vanishes,

∫ 2π

0

dφ0 e2iφ0 = 0. (56)

Therefore, the correlation function 〈s(0)s(x)〉 indeed vanishes consistent with the symme-

try.

11



i, p1

j, p2

i, p3

j, p4

ig2

Figure 1: The tree-level Feynman diagram for the fermion four-point func-
tion.

k, q + p1 k, q + p3

i, p1

j, p2

i, p3

j, p4

ig2

ig2

Figure 2: The one-loop t-channel Feynman diagram for the fermion four-
point function enhanced at large N . Because of the closed fermion loop, it
comes with an overall minus sign in addition to the Feynman rules.

Problem 12.2

We compute the beta function of the Gross–Neveu model using perturbation
theory.

L =

N
∑

i

ψ̄ii6∂ψi +
1

2
g2
0

(

N
∑

i

ψ̄iψi

)2

(57)

for i = 1, · · · , N . Note that the sum over i is taken inside the parenthes before
taking the square, which is not very clear in the way Peskin–Schroeder writes
the Lagrangian density. I’ve put the subscript g0 to indicate that it is the
bare coupling.

We compute the 1PI four-point function ψi(p1)ψj(p2) → ψi(p3)ψj(p4),
specifically for i 6= j to avoid complications with double counting etc. The
tree-level Feynman rule is simply iΓ

(4)
0 = ig2

0. At the one-loop level, we
first consider only the t-channel diagram which is enhanced by N . We will
come back to the diagrams suppressed by 1/N later on. The one-loop 1PI
four-point function is then

iΓ
(4)
1t1 = (−1)(ig2

0)
2N

∫

dDq

(2π)D
Tr

i

6q + 6p1

i

6q + 6p3

12



j, q − p1 j, q − p3

i, p1

j, p2

i, p3

j, p4
ig2

ig2

i, q + p1 i, q + p3

i, p1

j, p2

i, p3

j, p4

ig2

ig2

Figure 3: The one-loop t-channel Feynman diagrams for the fermion four-
point function not enhanced by large N . Because the fermion loop is not
closed, there is not an overall minus sign in addition to the Feynman rules.

= −2Ng4
0

∫ 1

0

dz

∫

dDq

(2π)D

[

1

q2 + z(1 − z)t
− 3z(1 − z)t/2

(q2 + z(1 − z)t)2

]

. (58)

Here, t = (p1 − p3)
2 = −2p1 · p3. Now we compute it with various different

renormalization schemes. I hope this simple exposition in different renor-
malization schemes would tell you their differences and equivalence. Note
that the on-shell renormalization or zero-momentum subtraction does not
work for this calculation because the evaluation of the above integral for
s = 4m2 = 0, t = u = 0 leads to an infrared singularity. We need to employ
other renormalization schemes.

There are two more t-channel diagrams without a closed fermion loop.
The amplitude with the fermion type i running in the loop is

iΓ
(4)
1t2 = (ig2

0)
2

∫

dDq

(2π)D

i

6q + 6p3

i

6q + 6p1

= g4
0

∫ 1

0

dz

∫

dDq

(2π)D

( 6q + z 6p3)( 6q + (1 − z) 6p1)

(q2 + z(1 − z)t)2

= g4
0

∫ 1

0

dz

∫

dDq

(2π)D

q2 + z(1 − z) 6p3 6p1

(q2 + z(1 − z)t)2

= g4
0

∫ 1

0

dz

∫

dDq

(2π)D

[

1

q2 + z(1 − z)t
− z(1 − z)t

(q2 + z(1 − z)t)2

]

. (59)

At the last step, we used the fact that 6p1u(p1) = 0 and similarly ū(p3) 6p3 = 0.
The same diagram for the species j running in the loop gives exactly the same
amplitude.

The s-channel diagram gives the amplitude

iΓ
(4)
1s = (ig2

0)
2N

∫

dDq

(2π)D

i

−6q + 6p1

i

6q + 6p2

(60)
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j, k + p2

i,−k + p1
i, p1

j, p2

i, p3

j, p4

ig2 ig2

Figure 4: The one-loop s-channel Feynman diagram for the fermion four-
point function. Because the fermion loop is not closed, there is not an overall
minus sign in addition to the Feynman rules.

j, k + p4

i, k + p1
i, p1

j, p4

i, p3

j, p2

ig2 ig2

Figure 5: The one-loop u-channel Feynman diagram for the fermion four-
point function. Because the fermion loop is not closed, there is not an overall
minus sign in addition to the Feynman rules.

Note that two propagators are not multiplied because each of them comes
with external fermion lines. Similarly, the u-channel diagram gives

iΓ
(4)
1u = (ig2

0)
2N

∫

dDq

(2π)D

i

6q + 6p1

i

6q + 6p4

(61)

Both s- and u-channel diagrams are logarithmically divergent, but the di-
vergent pieces cancel between them. The remaining finite piece does not
contribute to the beta function and we will not consider them further below.

(a) Bare Perturbation Theory with Momentum Cutoff

This is what is closest to the Wilsonian approach of integrating out momen-
tum slices. We first do the Wick rotation to the Euclidean space and the
one-loop amplitude is

iΓ
(4)
1t1 = −2iNg4

0

∫ 1

0

dz

∫

d2qE
(2π)D

[

1

−q2
E + z(1 − z)t

− 3z(1 − z)t/2

(−q2
E + z(1 − z)t)2

]

= −2iNg4
0

∫ 1

0

dz

∫ Λ2

0

dq2
E

4π

[

− 1

q2
E − z(1 − z)(−t) − 3z(1 − z)(−t)/2

(q2
E + z(1 − z)(−t))2

]
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= −2iNg4
0

∫ 1

0

dz
1

4π

[

− ln[q2
E + z(1 − z)(−t)] − 3z(1 − z)(−t)/2

q2
E + z(1 − z)(−t)

]Λ2

0

= −2iNg4
0

∫ 1

0

dz

[

− ln
Λ2

z(1 − z)(−t) +
3

2
+O

(−t
Λ2

)]

= 2iNg4
0 ln

Λ2

−t −
1

2
+O

(−t
Λ2

)

. (62)

The other t-channel amplitudes iΓ
(4)
1t2 for species i and j running in the loop

give the similar contribution without a factor of N with the opposite sign.
1PI four-point function is then

Γ(4)(p1, p2, p3, p4) = g2
0+

(N − 2)g4
0

2π
ln

Λ2

−t+Λ-independent+O

(−t
Λ2

)

+O(g6
0),

(63)
where we ignored the s- and u-channel diagrams without divergence (and
hence logarithm).

In the Wilsonian approach, we keep integrating out a slice in the momen-
tum space. The path integral over the momentum slice gives corrections to
the action in a way to modify the coupling constant and other parameters.
The physics of course is left intact because it is just doing the path integral
step by step instead of all at once. What it mounts to is that the phys-
ica quantity, such as the 1PI four-point function above, does not depend on
the cutoff as long as the coupling constant g0 is changed accordingly. The
requirement is therefore (Callan–Symanzik equation)

Λ
D

DΛ
Γ(4)({pi}; Λ, g0) =

[

Λ
∂

∂Λ
+ Λ

∂g0

∂Λ

∂

∂g0

]

Γ(4)({pi}; Λ, g0) = 0. (64)

Here, we used the fact that there is no wave function renormalization at
this order in perturbation theory. Substituting the explicit result into the
Callan–Symanzik equation, we find

β(g0) = Λ
∂g0

∂Λ
= − 1

2π
(N − 2)g3

0. (65)

This is the renormalization-group equation (or evolution equation) of the
coupling constant.

Now that we have the beta function, we can integrate it and work out
the cutoff dependence of the coupling constant explicitly. We first write it as

Λ
∂

∂Λ

1

g2
0

=
N − 2

π
, (66)
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and hence

(N − 2)g2
0(Λ

′) =
1

((N − 2)g2
0)

−1(Λ) − 1
π

ln Λ
Λ′

. (67)

At the cutoff Λ′ = Λe−π/(N−2)g2

0
(Λ) the coupling constant becomes infinite.

Note that the solution to the renormalization group equation is not the same as the
perturbative result, since

(N − 2)g2
0(Λ

′) = (N − 2)g2
0(Λ) ×

[

1 +
(N − 2)g2

0(Λ)

π
ln

Λ

Λ′

+

(

(N − 2)g2
0(Λ)

π
ln

Λ

Λ′

)2

+

(

(N − 2)g2
0(Λ)

π
ln

Λ

Λ′

)3

+ · · ·
]

.

(68)

Therefore, the solution is formally an all-order result. The point here is this. At each
step in Wilsonian integration over a momentum slice, the logarithm is small, and the
change in the coupling constant is small. Therefore, perturbation theory can be trusted
for the infinitesimal step. “All-at-one quantization” tries to integrate over a large range
in momentum space, resulting in a large logarithm that makes the perturbation theory
unreliable. If we study the infinitesimal slice and sum it up in the form of a differential
equation, the solution is the accumulation of trustworthy small corrections and is a reliable
calculation. In this way, differentiating the 1PI function and then integrate it will give
you a much more reliable answer than the original calculation.

In general, the one-loop calculation produces terms of the type

g2

π
ln

Λ

Λ′
,

g2

π
. (69)

If you integrate the beta-function at the one-loop level, it sums all orders of terms

(

g2

π

)n

lnn Λ

Λ′
. (70)

This result is called “leading-log approximation,” since it sums all terms enhanced by the
highest powers of the logarithms when the logarithm is large.

On the other hand, the two-loop calculation yields terms of the type

(

g2

π

)2

ln2 Λ

Λ′
,

(

g2

π

)2

ln
Λ

Λ′
,

(

g2

π

)2

. (71)

The first term is actually already taken care of by the integrated one-loop beta function
and hence is not new. The two-loop contribution to the beta function gives all terms of
the type

(

g2

π

)n+1

lnn Λ

Λ′
. (72)
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perturbation L0 L1 L2 L3 L4

tree tree
1-loop 1-loop 1-loop+RGE
2-loop 2-loop 2-loop+RGE 1-loop+RGE
3-loop 3-loop 3-loop+RGE 2-loop+RGE 1-loop+RGE
4-loop 4-loop 4-loop+RGE 3-loop+RGE 2-loop+RGE 1-loop+RGE

Table 1: What terms arise in perturbation theory and how they are resummed
in renormalization-group equations. Here, L is a logarithm.

In general, the k-loop perturbation theory gives terms of the type

(

g2

π

)k

lnl Λ

Λ′
, (l = k, k − 1, · · · , 0). (73)

The renormalization equation with k-loop beta function, once integrated, sums all contri-
butions of the type

(

g2

π

)n+k

lnn Λ

Λ′
. (74)

In this way, the renormalization group equation sums perturbation series in different or-
ders, giving more reliable results than the simple perturbation theoy when the logarithm
becomes large. (In D = 4, π is replaced by 4π2.)

(b) MS

With dimensional regularization, remember that the bare coupling g2
0 has a

slight mass dimension. In D = 2− 2ǫ dimensions, the mass dimension of the
bare coupling is 2ǫ. We write therefore g2

0 = g2µ2ǫ apart from the counter
terms which we will determine using the MS scheme. At this point, µ is an
arbitrary parameter of mass dimension introduced to fix up the dimension
of the coupling constant. Within the MS scheme, it turns out to have the
meaning of the renormalization scale. We only consider the logarithmically
divergent piece.

iΓ
(4)
1 = −2(N − 2)g4µ4ǫ

∫ 1

0

dz

∫

dDq

(2π)D

[

1

q2 + z(1 − z)t

]

= 2(N − 2)g4µ4ǫ i

(4π)1−ǫ

∫ 1

0

dzΓ(ǫ) (z(1 − z)(−t))−ǫ

= 2(N − 2)g4µ4ǫ i

(4π)1−ǫ
Γ(ǫ)

Γ(1 − ǫ)Γ(1 − ǫ)

Γ(2 − 2ǫ)
(−t)−ǫ. (75)
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At the last step, we used the identity

B(p, q) =

∫ 1

0

dz zp−1(1 − z)q−1 =
Γ(p)Γ(q)

Γ(p+ q)
. (76)

Expanding it up to O(ǫ0), we obtain

iΓ
(4)
1 = i(N − 2)g4µ4ǫ 1

2π
(−t)−ǫ

(

1

ǫ
− γ + ln 4π

)

. (77)

t dependence is not expanded yet to make the whole expression have the same
dimension as the tree-level amplitude iΓ

(4)
0 = ig2µ2ǫ. Again we omitted the s-

and u-channel contributions withoutO(N) enhancement or divergence (hence
logarithm). The counter term is determined to cancel the pole 1

ǫ
−γ+ln 4π,1

iΓ
(4)
ct = −i(N − 2)g4µ2ǫ 1

2π

(

1

ǫ
− γ + ln 4π

)

. (78)

Here, µ2ǫ is there to keep the same dimension for the amplitude. Then the
sum is finite in the limit ǫ → 0,

iΓ
(4)
0 + iΓ

(4)
1 + iΓ

(4)
ct = ig2

(

1 − (N − 2)g2

2π
ln

−t
µ2

)

. (79)

Therefore, g has the meaning of the coupling measured at t = −µ2, namely
that this fictitious parameter µ turns out to the be renormalization scale.
The 1PI effective action at this order is hence

Γ(4)(p1, p2, p3, p4) = g2

(

1 − (N − 2)g2

2π
ln

−t
µ2

)

+O(g6). (80)

The Callan–Symanzik equation says
[

µ
∂

∂µ
+ β(g)

∂

∂g
− 4γ

]

Γ(4)(p1, p2, p3, p4) = 0. (81)

At this order, γ = 0. On the other hand,

µ
∂

∂µ
Γ(4) = (N − 2)g4 1

π
+O(g6) = −β(g)(2g +O(g3)), (82)

and hence

β(g) = −(N − 2)g3

2π
. (83)

1The “Minimal Subtraction” scheme cancels only the pole 1/ǫ by the counter term.
MS (pronounced Em-Es-Bah) is “Modified Minimal Subtraction” scheme that includes
−γ + ln 4π.
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