\[E = mc^2 \]

\[B = 1/3.6 \]

\[H = \text{force} \]

\[\mu = \text{magnetic moment} \]

\[\text{current} \]

\[p = \text{mass} \]

\[\gamma + H \iff \text{chemical equilibrium} \]

\[\mu \times m = 0 \]

\[E = mc^2 + E_{\text{kinetic}} \]

\[\frac{1}{2} \mu \dot{\gamma} \]

\[\frac{1}{2} \mu \dot{\gamma} \]

\[\frac{1}{2} \mu \dot{\gamma} \]

\[\mu = b \]

\[u = \frac{g}{\gamma - m} \]

\[\text{another equation of some sort} \]

\[p \text{-ory} \]

\[A \]

\[\Delta \]

\[\text{Related equations} \]
The image contains handwritten mathematical expressions and equations, but they are not clearly legible. The content seems to involve calculus and algebra, possibly dealing with derivatives and integrals. Due to the handwriting style and quality, a precise transcription is not possible without additional context or a clearer image.
\[\frac{dR}{dt} = e^{-t} - \frac{e^{-t} - e^{-1/2}}{1 - e^{-1/2}} \]

\[R(0) = 1 \]

\[P(e^{t}) = e^{t} - \frac{e^{t} - e^{-1/2}}{1 - e^{-1/2}} \]

Note: The diagram includes a graph and some arrows, but the specific details are not legible in the image.