HW #10, due Apr 7

1. Z pole. The interaction Lagrangian of the Z boson to the quarks and leptons is given by

$$\mathcal{L} = g_Z Z_\mu \bar{f} \gamma^\mu \left(I_3^f \frac{1 - \gamma_5}{2} - Q_f \sin^2 \theta_W \right) f = g_Z Z_\mu \bar{f} \gamma^\mu \frac{1}{2} (g_V^f + g_A^f \gamma_5) f. \tag{1}$$

Here, $g_Z = e/\sin \theta_W/\cos \theta_W = \sqrt{g^2 + g'^2}$. Ignore m_f throughout the problems. The data used below are from

http://lepewwg.web.cern.ch/LEPEWWG/stanmod/lepew99.ps.gz

- (1) Calculate $\Gamma(Z \to f\bar{f})$ in terms of g_V^f and g_A^f . Write it down explicitly for $f = \nu$, e, u, d.
- (2) Calculate the angular distribution of Z-decay to $f\bar{f}$ when Z-boson is produced from (unpolarized) e^+e^- annihilation. (The contribution of the s-channel γ exchange can be ignored at Z-pole $s=m_Z^2$.) The forward-backward asymmetry is defined as

$$A_{FB} = \frac{F - B}{F + B},\tag{2}$$

where $F = \int_0^1 d\cos\theta (d\sigma/d\cos\theta)$ and $B = \int_{-1}^0 d\cos\theta (d\sigma/d\cos\theta)$. Show that A_{FB} is given by

$$A_{FB}^f = \frac{3}{4} A_f A_e, \tag{3}$$

where

$$A_f = \frac{2g_V^f g_A^f}{|g_V^f|^2 + |g_A^f|^2} \tag{4}$$

Using the experimental value $A_{FB}^l = 0.01701 \pm 0.00095$, determine $\sin^2 \theta_W$. (There are multiple solutions; choose the one close to 0.23. Similarly also in later problems.)

(3) Another important observable is the total number of Z bosons L and R produced from left-handed and right-handed electron beams. Show that the left-right asymmetry is given by

$$A_{LR} = \frac{L - R}{L + R} = A_e. \tag{5}$$

Using the experimental value $A_{LR} = 0.15108 \pm 0.00218$, determine $\sin^2 \theta_W$. (Hint: this problem can be done without calculating the Feynman diagrams at all!)

- (4) The invisible width of the Z-boson is believed to be $\Gamma(Z \to \nu_e \bar{\nu}_e, \nu_\mu \bar{\nu}_\mu, \nu_\tau \bar{\nu}_\tau)$. Using $\Gamma_{inv}/\Gamma_{l\bar{l}} = 5.941 \pm 0.016$, calculate $\sin^2 \theta_W$.
- (5) Using $\sin^2 \theta_W$ obtained from A_{FB}^l , show that the prediction of the electroweak theory $m_Z = \frac{1}{2}g_Z v$ is consistent with the observation $m_Z = 91.1872 \pm 0.0021$ GeV only if one uses $\alpha^{-1}(m_Z) = 128.878 \pm 0.090$ but not with 137.0359895(61).
- (6) The ratio $\Gamma_{had}/\Gamma_{l\bar{l}} = 20.768 \pm 0.024$ is enhanced by the correction due to the real and virtual gluon emission. Using the enhancement factor $1 + \alpha_s/\pi$, extract $\alpha_s(m_Z)$ using the $\sin^2 \theta_W$ obtained from A_{FB}^l .
- (7) Calculate the total width of Z boson using the $\sin^2 \theta_W$ obtained from A_{FB}^l and $\alpha_s(m_Z)$ obtained above and compare it to the observed value $\Gamma_Z = 2.4944 \pm 0.0024$ GeV.