
HW #6, due Oct 15

1. Toy Dirac Model, Wick’s theorem, LSZ reduction formula.
Consider the following quantum mechanics Lagrangian,

L = ψ̄(iσ3∂t −m)ψ, (1)

where σ3 is a Pauli matrix, and ψ̄ is defined by ψ̄ = ψ†σ3. ψ is a two-
component variable. We quantize the dynamical variable ψ and its canonical
conjugate momentum iψ† using the canonical anti-commutation relation {ψα, iψ†β} =
iδαβ for α, β = 1, 2.

(1) Show that the equation of motion (iσ3∂t−m)ψ = 0 has a positive and
a negative energy solution,

(iσ3∂t −m)ue−imt = 0, u =

(
1
0

)
(2)

(iσ3∂t −m)veimt = 0, v =

(
0
1

)
(3)

(2) We expand the operator ψ as

ψ(t) = aue−imt + b†veimt (4)

Show that the operators a and b satisfy the algebra of creation and
annihilation operators, {a, a†} = {b, b†} = 1, using the canonical anti-
commutation relation {ψα, ψ†β} = δαβ where α, β = 1, 2.

note The Hilbert space consists of four states, the “vacuum” |0〉 defined by
a|0〉 = b|0〉 = 0, “one-particle states” |a〉 = a†|0〉, |b〉 = b†|0〉 and the
“pair state” |ab〉 = a†b†|0〉.

(3) Show that the Hamiltonian is given by H0 = ψ†mσ3ψ = m(a†a−bb†) =
m(a†a+ b†b) + constant.
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(4) Show that the Feynman propagator is given by

SF (t1 − t2) = 〈0|Tψα(t1)ψ̄β(t2)|0〉

= θ(t1 − t2)e−im(t1−t2)

(
1 0
0 0

)
αβ

+ θ(t2 − t1)eim(t1−t2)

(
0 0
0 1

)
αβ

=
∫ ∞
−∞

dE

2π

i(Eσ3 +m)αβ
E2 −m2 + iε

e−iE(t1−t2) (5)

(Hint: Consider two cases t1 > t2 or t1 < t2 separately, and use contour
integral in lower or upper half plane, respectively. To locate the poles,
the figure on p. 31 of the textbook may help.)

note The above Feynman propagator is often written as

SF (t1 − t2) =
∫ ∞
−∞

dE

2π

ie−iE(t1−t2)

Eσ3 −m+ iε
(6)

(5) Calculate 〈0|Tψ(t1)ψ̄(t2)ψ(t3)ψ̄(t4)|0〉 when t1 > t2 > t3 > t4 in two
ways. (1) Use Wick’s theorem. (2) Work it out explicitly using annihilation
and creation operators.

(6) Now we add a time-dependent perturbation to the system:

H = H0 + V, V = f(t)ψ†σ1ψ (7)

where f(t) is a c-number function of time, and assume f(t) → 0 for
both the inifinite past t < −T and the inifinite future t > T . Calculate

the amplitude 〈0(∞)|0(−∞)〉 = 〈0|ITe−i
∫∞
−∞ VI (t)dt|0〉I at second order

in perturbation using the Wick’s theorem.

note Because of the perturbation, the Heisenberg operator ψ(t) does not
follow the equation of motion of the free field. However, it does follow
the free equation for t < −T and t > T because f(t) vanishes. Therefore,
the following Heisenberg operator

eimtūψ(t) (8)

reduces to the annihilation operator a for both t < −T and t > T .
Similarly, another Heisenberg operator

e−imtψ̄(t)v (9)

reduces to −b in these limits.
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(7) Consider the following matrix element in the Heisenberg picture∫ ∞
−∞

dteimt(−i)ū(iσ3∂t −m)〈0|TO(t1)ψ(t)|0〉 (10)

where O(t1) is an arbitrary (bosonic) Heisenberg operator. Using
partial integration, show that it can be simplified to

〈0|a(t =∞)O(t1)−O(t1)a(t = −∞)|0〉 = out〈a|O(t1)|0〉. (11)

(8) Consider the following matrix element in the Heisenberg picture∫ ∞
−∞

dt〈0|TO(t1)ψ̄β(t)|0〉[i(−iσ3

←
∂ t −m)v]βe

imt (12)

where O(t1) is an arbitrary (bosonic) Heisenberg operator. Using
partial integration, show that it can be simplified to

〈0|(bO(t1)−O(t1)a)|0〉 = out〈b|O(t1)|0〉. (13)

(9) Show that the “pair-creation” amplitude out〈ab|0〉in can be rewritten as

out〈ab|0〉in =
∫ ∞
−∞

dt1dt2e
imt1 [−iū(iσ3∂t1 −m)]α

〈0|Tψα(t1)ψ̄β(t2)|0〉[i(−iσ3

←
∂ t2 −m)v]βe

imt2 (14)

note Once we have the above expression for the amplitude, we can calculate
the correlation function 〈0|Tψα(t1)ψ̄β(t2)|0〉 using the time-dependent
perturbation theory to obtain a perturbative result for the amplitude.
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LSZ reduction formula and cross sections

1. Real Klein–Gordon field(√
Z
)n+m

out〈p1, · · · , pn|q1, · · · qm〉in

=
n∏
i

∫
d4xie

ipixii(2xi +m2)
m∏
j

∫
d4yje

−iqjyj i(2yj +m2)

〈0|Tφ(x1) · · ·φ(xn)φ(y1) · · ·φ(ym)|0〉 (1)

2. Dirac field
√
Z|particle(p,±)〉in =

∫
d4xe−ipxT ψ̄(x)|0〉(−i)(−i

←
6∂ −m)u±(p)(2)

√
Z|anti-particle(p,±)〉in =

∫
d4xe−ipxv̄∓(p)i(i6∂ −m)Tψ(x)|0〉 (3)

√
Zout〈particle(p,±)| =

∫
d4xeipxū±(p)(−i)(i6∂ −m)〈0|Tψ(x) (4)

√
Zout〈anti-particle(p,±)| =

∫
d4xeipx〈0|T ψ̄(x)i(−i

←
6∂−m)v∓(p) (5)

Repeated application of above formulae can convert all (anti)-particles in
initial or final states into the field operators so that the time-dependent
perturbation theory allows you to work out amplitudes.
3. Cross sections

iM(2π)4δ4(
∑
i

pi − q1 − q2) = out〈p1, · · · , pn|q1, q2〉in (6)

σ =
1

2sβ̄

n∏
i

∫
dp̃i|M|2(2π)4δ4(

∑
i

pi − q1 − q2) (7)

where ∫
dp̃ =

∫ d3p

(2π)32Ep
(8)

s = (q1 + q2)
2 (9)

β̄i =

√√√√1− 2(m2
1 +m2

2)

s
+

(
m2

1 −m2
2

s

)2

. (10)

Here, m2
1 = q2

1 and m2
2 = q2

2 are the mass squareds of particles in the initial
state.
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An Explicit Example: e+e− → µ+µ−

We would like to calculate the cross section of the process e+e− → µ+µ−.
The algorithm is the following. (1) Write the matrix element out〈µ+µ−|e+e−〉in
in terms of Heisenberg field operators using the LSZ reduction formula. (2)
Rewrite the correlation function of Heisenberg field operators in terms of field
operators in the interaction picture. (3) Calculate the correlation function
of the field operators in the interaction picture using the Wick’s theorm. (4)
Evaluate the amplitude. (5) Stick the amplitude into the formula of the cross
section. (6) If you are computing higher order corrections, compute the two-
point functions to calculate

√
Z factors. Below, we discuss only the leading

order result so that we can set all
√
Z = 1.

Let me show each of the steps briefly. The interaction Hamiltonian in
QED is given by

Hint = e
∫
d4x(ēγµe+ µ̄γµµ)Aµ. (1)

(1) LSZ reduction formula(√
Zµ
)2
(√

Ze

)2

out〈µ−(p1, h1)µ
+(p2, h2)|e−(p3, h3)e

+(p4, h4)〉in

=
4∏
i

∫
d4xie

i(p1x1+p2x2−p3x3−p4x4)

[ūh1(p1)(−i)(i 6∂x1 −mµ)][v̄−h4(p4)i(i 6∂x4 −me)]

〈0|Tµ(x1)µ̄(x2)ē(x3)e(x4)|0〉
[i(−i

←
6∂x2
−mµ)v−h2(p2)][(−i)(−i

←
6∂x3
−me)uh3(p3)] (2)

(2) Interaction picture.

〈0|Tµ(x1)µ̄(x2)ē(x3)e(x4)|0〉 =
〈0|TµI(x1)µ̄I(x2)ēI(x3)eI(x4)e

−i
∫
d4yHI (y)|0〉

〈0|Te−i
∫
d4yHI (y)|0〉

(3)
(3) Wick’s theorem

4∏
i

∫
d4xie

i(p1x1+p2x2−p3x3−p4x4)〈0|Tµ(x1)µ̄(x2)ē(x3)e(x4)|0〉

=
4∏
i

∫
d4xie

i(p1x1+p2x2−p3x3−p4x4)(−ie)2 1

2!

∫
d4y1d

4y2
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〈0|TµI(x1)µ̄I(x2)ēI(x3)eI(x4)HI(y1)HI(y2)|0〉

−(−ie)2 1

2!

∫
d4y1d

4y2〈0|HI(y1)HI(y2)|0〉+O(e)4

=

(
i

6p1 −mµ
γµ

i

− 6p2 −mµ

)(
i

− 6p4 −me
γν

i

6p3 −me

)
−igµν
q2 + iε

(2π)4δ4(p1 + p2 − p3 − p4) +O(e)4 (4)

Here, I took the Feynman gauge ξ = 1 for the photon propagator. Hereafter,
I drop O(e)4. q = (p1 + p2) = (p3 + p4) is the four-momentum in the photon
propagator.
(4) Amplitude. Note that the LSZ reduction formula precisely cancels the
extra fermion propagators.

iM = (−ie)2 [ūh1(p1)γ
µv−h2(p2)] [v̄−h4(p4)γ

νuh3(p3)]
−igµν

(p1 + p2)2 + iε
(5)

Then one can plug in the explicit forms of u and v spinors to obtain the
amplitude.
(5) Cross section.

σ =
1

2sβ̄i

∫
dp̃1dp̃2|M|2(2π)4δ4(p1 + p2 − p3 − p4). (6)

In the center of momentum frame, the phase space integral can be drastically
simplified:

∫
dp̃1dp̃2(2π)4δ4(p1 + p2 − p3 − p4) =

β̄f
8π

∫ 1

−1

d cos θ

2

∫ 2π

0

dφ

2π
, (7)

where β̄f is defined by the same formula as β̄i except the mass squareds are
those of the final state particles. In particular, we have m2

1 = m2
2 = m2

µ in
this case and hence

β̄f =

√
1−

4m2
µ

s
. (8)

2


