
HW #4, due Oct 1

1. The P and C transformation of fermion pair bound states. It is
customary to use Pauli–Dirac representation for γ-matrices when one is dealing
with non-relativistic fermions, especially their bound states. You first start with
the solutions at rest pµ = ±m(1, 0, 0, 0) which are eigenstates of sz (spin along
the z axis). Then you boost the Lorentz frame to obtain four-momentum along
arbitrary directions. In this way, you obtain two positive energy solutions labeled
as u(p, s), where s = ±1/2 is the eigenvalue of sz before the boost. Similarly,
you obtain two negative energy solutions v(p, s). You can find explicit expressions
for u(p, s) and v(p, s) in many textbooks, e.g. the one by Bjorken and Drell. By
defining u(p, s) and v(p, s) in the above manner, you can choose your basis such
that the following relations hold (far easier than the helicity basis!):

γ0u(~p, s) = u(−~p, s), γ0v(~p, s) = −v(−~p, s), (1)

iγ0γ2
T
u(~p, s) = v(~p, s), iγ0γ2

T
v(~p, s) = u(~p, s). (2)

We expand the Dirac field in the usual way also with this basis, i.e.,

ψ(x) =
∫
dp̃
∑
s

(a(p, s)u(p, s)e−ip·x + b†(p, s)v(p, s)eip·x) (3)

and define the parity and charge conjugation by

Pψ(~x, t)P = γ0ψ(−~x, t) (4)

Cψ(~x, t)C = iγ0γ2
T

ψ(~x, t) (5)

(1) Show that the mode operators satisfy the following relations, Pa(~p, s)P =
a(−~p, s), Pb(~p, s)P = −b(−~p, s).

(2) Show that the mode operators satisfy the following relations, Ca(~p, s)C =
b(~p, s), Cb(~p, s)C = a(~p, s).

(3) Define a state |L,Lz;S, Sz〉 with L = l and S = 0 by

|l,m; 0, 0〉
=

∫
d3~p

[
a†(~p,+1/2)b†(−~p,−1/2)− a†(~p,−1/2)b†(−~p,+1/2)

]
×

Y l
m(~̂p)f(|~p|)|0〉 (6)

Show that P |l,m; 0, 0〉 = −(−1)l|l,m; 0, 0〉. Here, Y l
m(~̂p) is defined by the

direction of ~̂p = ~p/|~p| while f(|~p|) is the “radial” part which depends only
on the size of the momentum.
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(4) Show that C|l,m; 0, 0〉 = (−1)l|l,m; 0, 0〉. Since a photon has an odd eigen-
value under C, l = 0 state can decay into two photons. Examples include a
para-positronium (L = S = 0 bound state of an electron and a positron), π0

meson and η0 meson (both uū and dd̄ bound states in L = S = 0 channel).

(5) Define a state with L = l and S = 1 by

|l,m; 1, 1〉 =
∫
d3~p

[
a†(~p,+1/2)b†(−~p,+1/2)

]
Y l
m(~̂p)f(|~p|)|0〉 (7)

Show that P |l,m; 1, 1〉 = −(−1)l|l,m; 1, 1〉. This is the same eigenvalue as
the S = 0 case.

(6) Show that C|l,m; 1, 1〉 = −(−1)l|l,m; 1, 1〉, which is the opposite eigenvalue
from the S = 0 case. l = 0 state can hence decay into three photons.
Examples include an ortho-positronium (L = 0, S = 1) decaying into three
photons, and a J/ψ particle (L = 0, S = 1 bound state of charm and anti-
charm quark) which decays into three “gluons”.

Note It is usually summarized as P = (−1)L+1 and C = (−1)L+S.

2. CP . There are neutral Kaons, K0 andK
0
, distinguished by their “strangeness”,

1 and −1, respectively. In the quark model, they are ds̄ and sd̄ bound states.
Assume that CP is a good quantum number.

(1) Both of them are L = S = 0 bound states. Are they scalars or pseudo-
scalars?

(2) Assume C|K0〉 = |K0〉 and vice versa. Write down eigenstates of CP opera-

tor as linear combinations of |K0〉 and |K0〉. The CP = 1 state is called K1,
and CP = −1 state K2.

(3) Another neutral meson, π0 is a bound state of uū and dd̄ in L = S = 0
channel. (Never mind it is actually a uū− dd̄ combination.) If you have two
π0 with no relative angular momentum, show that it is a state with CP = 1,
using a similar technique as in Problem 1., but with creation operators of a
Klein-Gordon field. Therefore, K1 can decay into 2π0 but K2 cannot.

(4) Can K2 decay into 3π0? (Assume it is kinematically allowed)

Note Experimentally, it was observed that K2 can actually decay occasionally
into 2π0. This was the only pheomenon known to 1998 which violates CP
invariance.
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