
Perturbation Theory

To make up my embarrassment, I outline the derivation of the time-dependent
perturbation theory below. I thank Craig and James for help.

Step 0. We start with operators O(t0) and states |ψ(t0)〉 defined at a reference
time t0. In Schrödinger picture, states evolve in time |ψ(t)〉S = UF (t, t0)|ψ(t0)〉
where UF (t, t0) = e−iH(t−t0) is the time-evolution operator with the full Hamilto-
nian. The operators do not depend on time: OS(t) = O(t0). On the other hand in
Heisenberg picture, states do not evolve in time |ψ(t)〉H = |ψ(t0)〉, but the opera-
tors do: OH(t) = UF (t, t0)†O(t0)UF (t, t0). It is easy to check that matrix elements
are the same in either picture: 〈ψ2(t)|HOH(t)|ψ1(t)〉H = 〈ψ2(t)|SOS(t)|ψ1(t)〉S. If
we suppress the subscript in states or operators below, they are in Heisenberg
picture.

Step 1. The full Hamiltonian is divided into the unperturbed piece H0 and the
interaction Hint as H = H0 + Hint . We define the operators in the interaction
picture by

OI(t) ≡ U0(t, t0)†O(t0)U0(t, t0), (1)

where U0(t, t0) = e−iH0(t−t0) is the time evolution operator in the unperturbed
theory. To keep the matrix elements the same as those in other pictures, time
evolution of the states is fixed to be

|ψ(t)〉I = U0(t, t0)†UF (t, t0)|ψ(t0)〉 ≡ UI(t, t0)|ψ(t0)〉. (2)

Note that t can be either later or earlier than t0.

Step 2. We rewrite UI(t, t0) = U0(t, t0)†UF (t, t0) using time-ordered products. We
solve the differential equation,

i
∂

∂t
UI(t, t0) = U0(t, t0)†HintU0(t, t0)UI(t, t0) ≡ HI(t)UI(t, t0), (3)

and find

UI(t, t0) = Te
−i
∫ t
t0
HI (t′)dt′

. (4)

Here again t can be either later or earlier than t0.

Step 3.∗ We generalize the definition of UI(t, t0) to arbitrary arguments UI(t2, t1)
by demanding the following nice property

UI(t3, t2)UI(t2, t1) = UI(t3, t1). (5)

∗This is the step I’ve missed in the class.



By choosing a particular case of t3 = t1 = t0, and using the fact UI(t0, t0) = 1, we
find

UI(t0, t) = UI(t, t0)† = UF (t, t0)†U0(t, t0) = UF (t0, t)U0(t0, t)
†. (6)

Using again Eq. (5) for t2 = t0 this time, we find

UI(t3, t1) = UI(t3, t0)UI(t0, t1)

=
[
U0(t3, t0)†UF (t3, t0)

] [
UF (t0, t1)U0(t0, t1)†

]
= U0(t0, t3)UF (t3, t1)U0(t1, t0).

(7)

This defines UI for arbitrary arguments, and it is easy to check that this expression
satisfies the property we demanded Eq. (5).

Step 4. We show that UI(t2, t1) defined above (7) can be written as†

UI(t2, t1) = Te
−i
∫ t2
t1
HI(t′)dt′

. (8)

First, UI(t, t1) = UI(t, t0)UI(t0, t1) follows the same differential equation Eq. (3)
under t derivative because the UI(t0, t1) piece does not depend on t. Second,
r.h.s. of Eq. (8) also follows the same differential equation, which can be checked
explicitly by using the Taylor expansion of the exponential. Third, both sides of
the equation reduce to 1 (the identity operator) when t2 → t1. Therefore, l.h.s.
and r.h.s. of the equation satisfy the same first-order differential equation and has
the same boundary condition, and are hence the same.

Step 5. We rewrite the ground state of the full Hamiltonian H|Ω〉 = EΩ|Ω〉 in
terms of the ground state of the unperturbed Hamiltonian H0|0〉 = E0|0〉. First,

UF (t0,−T )|0(t0)〉 = UF (t0,−T )

[
|Ω(t0)〉〈Ω|0〉+

∑
i

|i(t0)〉〈i|0〉
]

= e−iEΩ(t0+T )|Ω(t0)〉〈Ω|0〉+
∑
i

e−iEi(t0+T )|i(t0)〉〈i|0〉. (9)

Now we take the limit T → ∞(1− iε) where all excited states |i〉 get suppressed
exponentially relative to the ground state:

UF (t0,−T )|0(t0)〉 = e−iEΩ(t0+T )|Ω(t0)〉〈Ω|0〉. (10)

Here and hereafter, all equalities hold only in the limit. The l.h.s. of the equation
can be rewritten as

UF (t0,−T )|0(t0)〉 = UI(t0,−T )U0(−T, t0)†|0(t0)〉 = UI(t0,−T )|0(t0)〉e−iE0(t0+T ),
(11)

†We could have adopted this as the definition of UI for arbitrary arguments, and shown
Eq. (5). But I find this logic more transparent.



and putting them together,

|Ω(t0)〉 =
e−i(E0−EΩ)(t0+T )

〈Ω|0〉 UI(t0,−T )|0(t0)〉. (12)

Step 6. Following exactly the same steps, we find

〈0(t0)|UF (T, t0) = 〈0|Ω〉〈Ω(t0)|e−iEΩ(T−t0) (13)

in the limit T →∞(1− iε). The l.h.s. of the equation can be rewritten as

〈0(t0)|UF (T, t0) = 〈0(t0)|U0(T, t0)UI(T, t0) = 〈0(t0)|UI(T, t0)e−iE0(T−t0), (14)

and putting them together,

〈Ω(t0)| = e−i(E0−EΩ)(T−t0)

〈0|Ω〉 〈0(t0)|UI(T, t0). (15)

Step 7. Combining Eqs. (12) and (15), we find

1 = 〈Ω|Ω〉 =
e−i(E0−EΩ)(T−t0)e−i(E0−EΩ)(t0+T )

|〈0|Ω〉|2 〈0(t0)|UI(T, t0)UI(t0,−T )|0(t0)〉

=
e−i(E0−EΩ)2T

|〈0|Ω〉|2 〈0(t0)|UI(T,−T )|0(t0)〉. (16)

Step 8. We now look at time-ordered products of operators in Heisenberg picture:

O = TO1(t1)O2(t2) · · ·On(tn) (17)

Of course the operators also in general depend on positions in space (~x1 etc), but
I suppressed them to simplify the expression. The operators in the interaction
picture Eq. (1) are related to those in Heisenberg picture as

O(t) = UF (t, t0)†O(t0)UF (t, t0)

= UF (t, t0)†
[
U0(t, t0)OI(t)U0(t, t0)†

]
UF (t, t0)

= UI(t, t0)†OI(t0)UI(t, t0). (18)

We rewrite O in Eq. (17) in the interaction picture. We consider the case t1 >
t2 > · · · > tn. Then,

O = O1(t1)O2(t2) · · ·On(tn)

= UI(t1, t0)†O1I(t1)UI(t1, t0)UI(t2, t0)†O2I(t2)UI(t2, t0)

· · ·UI(tn, t0)†OnI(tn)UI(tn, t0)

= UI(t0, t1)O1I(t1)UI(t1, t2)O2I(t2)UI(t2, t3) · · ·UI(tn−1, tn)OnI(tn)UI(tn, t0),

(19)



where Eqs. (5), (6) were used in the last step.

Step 9. Now we are in the position to rewrite the correlation functions using the
operators in the interaction picture. We would like to compute the correlation
function (in Heisenberg picture)

G = 〈Ω|TO1(t1)O2(t2) · · ·On(tn)|Ω〉 = 〈Ω|O|Ω〉. (20)

Using Eqs. (12), (15), and (19), we find

G =
e−i(E0−EΩ)(T−t0)

〈0|Ω〉 〈0(t0)|UI(T, t0)UI(t0, t1)O1I(t1)UI(t1, t2)O2I(t2)UI(t2, t3)

· · ·UI(tn−1, tn)OnI(tn)UI(tn, t0)UI(t0,−T )|0(t0)〉e
−i(E0−EΩ)(t0+T )

〈Ω|0〉

=
e−i(E0−EΩ)2T

|〈0|Ω〉|2 〈0(t0)|UI(T, t1)O1I(t1)UI(t1, t2)O2I(t2)UI(t2, t3)

· · ·UI(tn−1, tn)OnI(tn)UI(tn,−T )|0(t0)〉. (21)

Now recalling that we took the specific case of t1 > t2 > · · · > tn and each

UI(ti, ti+1) = Te
−i
∫ ti
ti+1

HI (t′)dt′

, we can write it in a compact form,

G =
e−i(E0−EΩ)2T

|〈0|Ω〉|2 〈0(t0)|TO1I(t1)O2I(t2) · · ·OnI(tn)e
−i
∫ T
−T HI (t′)dt′ |0(t0)〉. (22)

Finally using Eq. (16) we find Dyson’s formula,

G =
〈0(t0)|TO1I(t1)O2I(t2) · · ·OnI(tn)e

−i
∫ T
−T HI(t′)dt′ |0(t0)〉

〈0(t0)|Te−i
∫ T
−T HI(t′)dt′ |0(t0)〉

. (23)

Even though we derived this formula for t1 > t2 > · · · > tn, this expression does not
depend on this particular order because everything is time-ordered. This proves
Dyson’s formula.


