1. Consider the decay of a $3d$ state of hydrogen atom to the $2p$ level.
 (a) If the initial state has $m = 2$, show that the only possible final state is $m = 1$.
 (b) Calculate the decay rate for this transition.
 (c) Compare it to the data (A_{ki} in "Persistent Lines of Neutral Hydrogen" at NIST web site, and discuss why it agrees with one but not the other entry.

2. Calculate the cross section of the scattering of a photon off an electron in the following steps (basically the time-dependent treatment in the scattering theory). Assume that the photon energy is much smaller than $m_e c^2$ (non-relativistic).
 (a) Using expressions in the lecture notes for the photon-atom scattering before the dipole approximation is made, and take the initial, final, and intermediate electron states to be plane waves $\langle x|A \rangle = L^{-3/2} e^{i\vec{p}_i \cdot \vec{x}/\hbar}$, $\langle x|B \rangle = L^{-3/2} e^{i\vec{p}_f \cdot \vec{x}/\hbar}$, and $\langle x|I \rangle = L^{-3/2} e^{i\vec{k} \cdot \vec{x}/\hbar}$. Perform the space integral and obtain the amplitude.
 (b) With $\vec{p}_i = 0$, show that the terms due to the second-order perturbation vanish, and that the amplitude is given by
 \[
 \langle f|U_I|i \rangle = -i 2\pi \delta(E_f - E_i) r_0 \frac{2\pi \hbar c^2}{L^6} \frac{1}{\sqrt{\omega_i \omega_f}} (2\pi \hbar)^3 \delta(\vec{p}_i + \vec{q}_i - \vec{p}_f - \vec{q}_f) \hat{e}_f^* \cdot \hat{e}_i.
 \] (1)
 (c) Using the usual trick to rewrite one factor of $2\pi \delta(E_f - E_i) = T/\hbar$, and similarly $(2\pi \hbar)^3 \delta(\vec{p}_i + \vec{q}_i - \vec{p}_f - \vec{q}_f) = L^3$, find the expression for the cross section. Show that it agrees with the classical Thomson scattering cross section.
 (d) Make a rough estimate on how long a photon created at the core of the Sun takes to diffuse out of it.

3. Using the shell model, calculate the magnetic moments of the nuclides 209Pb, 207Pb, 209Bi, and 207Tl. Compare them to the observed values $-1.44 \mu_N$, $+0.578 \mu_N$, $+4.11 \mu_N$, and $+1.88 \mu_N$. (The agreement is not perfect.)