221B Lecture Notes
 Notes on Spherical Bessel Functions

1 Definitions

We would like to solve the free Schrödinger equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m}\left[\frac{1}{r} \frac{d^{2}}{d r^{2}} r-\frac{l(l+1)}{r^{2}}\right] R(r)=\frac{\hbar^{2} k^{2}}{2 m} R(r) \tag{1}
\end{equation*}
$$

$R(r)$ is the radial wave function $\psi(\vec{x})=R(r) Y_{l}^{m}(\theta, \phi)$. By factoring out $\hbar^{2} / 2 m$ and defining $\rho=k r$, we find the equation

$$
\begin{equation*}
\left[\frac{1}{\rho} \frac{d^{2}}{d \rho^{2}} \rho-\frac{l(l+1)}{\rho^{2}}+1\right] R(\rho)=0 \tag{2}
\end{equation*}
$$

The solutions to this equation are spherical Bessel functions. Due to some reason, I don't see the integral representations I use below in books on mathemtical formulae, but I believe they are right.

The behavior at the origin can be studied by power expansion. Assuming $R \propto \rho^{n}$, and collecting terms of the lowest power in ρ, we get

$$
\begin{equation*}
n(n+1)-l(l+1)=0 \tag{3}
\end{equation*}
$$

There are two solutions,

$$
\begin{equation*}
n=l \quad \text { or } \quad-l-1 \tag{4}
\end{equation*}
$$

The first solution gives a positive power, and hence a regular solution at the origin, while the second a negative power, and hence a singular solution at the origin.

It is easy to check that the following integral representations solve the above equation Eq. (22):

$$
\begin{equation*}
h_{l}^{(1)}(\rho)=-\frac{(\rho / 2)^{l}}{l!} \int_{+1}^{i \infty} e^{i \rho t}\left(1-t^{2}\right)^{l} d t \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{l}^{(2)}(\rho)=\frac{(\rho / 2)^{l}}{l!} \int_{-1}^{i \infty} e^{i \rho t}\left(1-t^{2}\right)^{l} d t \tag{6}
\end{equation*}
$$

By acting the derivatives in Eq. (22), one finds

$$
\begin{align*}
& {\left[\frac{1}{\rho} \frac{d^{2}}{d \rho^{2}} \rho-\frac{l(l+1)}{\rho^{2}}+1\right] h_{l}^{(1)}(\rho)} \\
& \quad=-\frac{(\rho / 2)^{l}}{l!} \int_{ \pm 1}^{i \infty}\left(1-t^{2}\right)^{l}\left[\frac{l(l+1)}{\rho^{2}}+\frac{2(l+1) i t}{\rho}-t^{2}-\frac{l(l+1)}{\rho^{2}}+1\right] d t \\
& \quad=-\frac{(\rho / 2)^{l}}{l!} \frac{1}{i \rho} \int_{ \pm 1}^{i \infty} \frac{d}{d t}\left[e^{i \rho t}\left(1-t^{2}\right)^{l+1}\right] d t \tag{7}
\end{align*}
$$

Therefore only boundary values contribute, which vanish both at $t=1$ and $t=i \infty$ for $\rho=k r>0$. The same holds for $h_{l}^{(2)}(\rho)$.

One can also easily see that $h_{l}^{(1) *}(\rho)=h_{l}^{(2)}\left(\rho^{*}\right)$ by taking the complex conjugate of the expression Eq. (5) and changing the variable from t to $-t$.

The integral representation Eq. (5) can be expanded in powers of $1 / \rho$. For instance, for $h_{l}^{(1)}$, we change the variable from t to x by $t=1+i x$, and find

$$
\begin{align*}
h_{l}^{(1)}(\rho) & =-\frac{(\rho / 2)^{l}}{l!} \int_{0}^{\infty} e^{i \rho(1+i x)} x^{l}(-2 i)^{l}\left(1-\frac{x}{2 i}\right)^{l} i d x \\
& =-i \frac{(\rho / 2)^{l}}{l!} e^{i \rho}(-2 i)^{l} \sum_{k=0}^{l}{ }_{l} C_{k} \int_{0}^{\infty} e^{-x \rho}\left(-\frac{x}{2 i}\right)^{k} x^{l} d x \\
& =-i \frac{e^{i \rho}}{\rho} \sum_{k=0}^{l} \frac{(-i)^{l-k}(l+k)!}{2^{k} k!(l-k)!} \frac{1}{\rho^{k}} . \tag{8}
\end{align*}
$$

Similarly, we find

$$
\begin{equation*}
h_{l}^{(2)}(\rho)=i \frac{e^{-i \rho}}{\rho} \sum_{k=0}^{l} \frac{i^{l-k}(l+k)!}{2^{k} k!(l-k)!} \frac{1}{\rho^{k}} . \tag{9}
\end{equation*}
$$

Therefore both $h_{l}^{(1,2)}$ are singular at $\rho=0$ with power ρ^{-l-1}.
The combination $j_{l}(\rho)=\left(h_{l}^{(1)}+h_{l}^{(2)}\right) / 2$ is regular at $\rho=0$. This can be seen easily as follows. Because $h_{l}^{(2)}$ is an integral from $t=-1$ to $i \infty$, while $h_{l}^{(1)}$ from $t=+1$ to $i \infty$, the differencd between the two corresponds to an integral from $t=-1$ to $t=i \infty$ and coming back to $t=+1$. Because the integrand does not have a pole, this contour can be deformed to a straight integral from $t=-1$ to +1 . Therefore,

$$
\begin{equation*}
j_{l}(\rho)=\frac{1}{2} \frac{(\rho / 2)^{l}}{l!} \int_{-1}^{1} e^{i \rho t}\left(1-t^{2}\right)^{l} d t . \tag{10}
\end{equation*}
$$

In this expression, $\rho \rightarrow 0$ can be taken without any problems in the integral and hence $j_{l} \propto \rho^{l}$, i.e., regular. The other linear combination $n_{l}=\left(h_{l}^{(1)}-\right.$ $\left.h_{l}^{(2)}\right) / 2 i$ is of course singular at $\rho=0.1$ Note that

$$
\begin{equation*}
h_{l}^{(1)}(\rho)=j_{l}(\rho)+i n_{l}(\rho) \tag{11}
\end{equation*}
$$

is analogous to

$$
\begin{equation*}
e^{i \rho}=\cos \rho+i \sin \rho . \tag{12}
\end{equation*}
$$

It is useful to see some examples for low l.

$$
\begin{array}{lll}
j_{0}=\frac{\sin \rho}{\rho}, & j_{1}=\frac{\sin \rho}{\rho^{2}}-\frac{\cos \rho}{\rho}, & j_{2}=\frac{3-\rho^{2}}{\rho^{3}} \sin \rho-\frac{3}{\rho^{2}} \cos \rho \\
n_{0}=-\frac{\cos \rho}{\rho}, & n_{1}=-\frac{\cos \rho}{\rho^{2}}-\frac{\sin \rho}{\rho}, & n_{2}=-\frac{3-\rho^{2}}{\rho^{3}} \cos \rho-\frac{3}{\rho^{2}} \sin \rho \\
h_{0}^{(1)}=-i \frac{e^{i \rho}}{\rho}, & h_{1}^{(1)}=-i\left(\frac{1}{\rho^{2}}-\frac{i}{\rho}\right) e^{i \rho} & h_{2}^{(1)}=-i\left(\frac{3-\rho^{2}}{\rho^{3}}-\frac{3 i}{\rho^{2}}\right) e^{i \rho} \tag{13}\\
h_{0}^{(2)}=i \frac{e^{-i \rho}}{\rho}, & h_{1}^{(2)}=i\left(\frac{1}{\rho^{2}}+\frac{i}{\rho}\right) e^{-i \rho} & h_{2}^{(2)}=i\left(\frac{3-\rho^{2}}{\rho^{3}}+\frac{3 i}{\rho^{2}}\right) e^{-i \rho}
\end{array}
$$

2 Power Series Expansion

Eq. (5) can be used to obtain the power series expansion. We first split the integration region into two parts,

$$
\begin{equation*}
h_{l}^{(1)}(\rho)=-\frac{(\rho / 2)^{l}}{l!} \int_{+1}^{i \infty} e^{i \rho t}\left(1-t^{2}\right)^{l} d t=-\frac{(\rho / 2)^{l}}{l!}\left[\int_{0}^{i \infty}-\int_{0}^{1}\right] e^{i \rho t}\left(1-t^{2}\right)^{l} d t . \tag{14}
\end{equation*}
$$

The first term can be expanded in a power series by a change of variable, $t=i \tau / \rho$,

$$
\begin{aligned}
\text { the first term } & =-\frac{(\rho / 2)^{l}}{l!} \int_{0}^{\infty} e^{-\tau}\left(1+\frac{\tau^{2}}{\rho^{2}}\right)^{l} \frac{i d \tau}{\rho} \\
& =-i \frac{1}{l!2^{l} \rho^{l+1}} \int_{0}^{\infty} e^{-\tau}\left(\tau^{2}+\rho^{2}\right)^{l} d \tau \\
& =-i \frac{1}{l!2^{l} \rho^{l+1}} \int_{0}^{\infty} e^{-\tau} \sum_{n=l}^{l}{ }_{l} C_{n} \rho^{2 n} \tau^{2 l-2 n} d \tau \\
& =-i \frac{1}{l!2^{l} \rho^{l+1}} \sum_{n=l}^{l} \frac{l!}{n!(l-n)!} \rho^{2 n} \Gamma(2 l-2 n+1)
\end{aligned}
$$

[^0]\[

$$
\begin{equation*}
=-i \frac{1}{2^{l} \rho^{l+1}} \sum_{n=l}^{l} \frac{(2 l-2 n)!}{n!(l-n)!} \rho^{2 n} . \tag{15}
\end{equation*}
$$

\]

On the other hand, the second term can be expanded as

$$
\begin{align*}
\text { the second term } & =\frac{(\rho / 2)^{l}}{l!} \int_{0}^{1} e^{i \rho t}\left(1-t^{2}\right)^{l} d t \\
& =\frac{(\rho / 2)^{l}}{l!} \int_{0}^{1} \sum_{n=0}^{\infty} \frac{i^{n}}{n!} \rho^{n} t^{n}\left(1-t^{2}\right)^{l} d t \\
& =\frac{(\rho / 2)^{l}}{l!} \sum_{n=0}^{\infty} \frac{i^{n}}{n!} \int_{0}^{1} \rho^{n} t^{n}\left(1-t^{2}\right)^{l} d t \\
& =\frac{(\rho / 2)^{l}}{l!} \sum_{n=0}^{\infty} \frac{i^{n}}{n!} \rho^{n} \int_{0}^{1} x^{(n-1) / 2}(1-x)^{l} \frac{1}{2} d x \\
& =\frac{1}{2} \frac{(\rho / 2)^{l}}{l!} \sum_{n=0}^{\infty} \frac{i^{n}}{n!} \rho^{n} \frac{\Gamma\left(\frac{n}{2}+\frac{1}{2}\right) \Gamma(l+1)}{\Gamma\left(\frac{n}{2}+l+\frac{3}{2}\right)} \tag{16}
\end{align*}
$$

At this point, it is useful to separate the sum to even $n=2 k$ and odd $n=2 k+1$,
the second term

$$
\begin{align*}
& =\frac{1}{2}\left(\frac{\rho}{2}\right)^{l}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} \rho^{2 k} \frac{\Gamma\left(k+\frac{1}{2}\right)}{\Gamma\left(k+l+\frac{3}{2}\right)}+\sum_{k=0}^{\infty} \frac{i(-1)^{k}}{(2 k+1)!} \rho^{2 k+1} \frac{\Gamma(k+1)}{\Gamma(k+l+2)}\right) \\
& =\frac{\rho^{l}}{2^{l+1}}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} \rho^{2 k} \frac{\Gamma\left(k+\frac{1}{2}\right)}{\Gamma\left(k+l+\frac{3}{2}\right)}+\sum_{k=0}^{\infty} \frac{i(-1)^{k}}{(2 k+1)!} \rho^{2 k+1} \frac{k!}{(k+l+1)!}\right) \tag{17}
\end{align*}
$$

Because $h_{l}^{(1)}(\rho)=j_{l}(\rho)+i n_{l}(\rho)$, we find

$$
\begin{align*}
& j_{l}(\rho)=\frac{\rho^{l}}{2^{l+1}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} \frac{\Gamma\left(k+\frac{1}{2}\right)}{\Gamma\left(k+l+\frac{3}{2}\right)} \rho^{2 k} \tag{18}\\
& n_{l}(\rho)=-\frac{1}{2^{l} \rho^{l+1}} \sum_{n=l}^{l} \frac{(2 l-2 n)!}{n!(l-n)!} \rho^{2 n}+\frac{\rho^{l}}{2^{l+1}} \sum_{k=0}^{\infty} \frac{(-1)^{k} k!}{(2 k+1)!(k+l+1)!} \rho^{2 k+1} \tag{19}
\end{align*}
$$

The expression for j_{l} can be simplified using the identity $\Gamma\left(n+\frac{1}{2}\right)=$ $\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right) \cdots \frac{3}{2} \frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{(2 n-1)!!}{2^{n}} \sqrt{\pi}$,

$$
j_{l}(\rho)=\frac{\rho^{l}}{2^{l+1}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} \frac{(2 k-1)!!\sqrt{\pi} / 2^{k}}{(2 k+2 l+1)!!\sqrt{\pi} / 2^{k+l+1}} \rho^{2 k}
$$

$$
\begin{align*}
& =\rho^{l} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} \frac{1}{(2 k+2 l+1)(2 k+2 l-1) \cdots(2 k+1)} \rho^{2 k} \\
& =\rho^{l} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}\right)}{(2 k)!} \frac{(2 k+2 l)(2 k+2 l-2) \cdots(2 k+2)(2 k)!}{(2 k+2 l+1)!} \rho^{2 k} \\
& =\rho^{l} \sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{l}(k+l)!}{k!(2 k+2 l+1)!} \rho^{2 k} \\
& =(2 \rho)^{l} \sum_{k=0}^{\infty} \frac{(-1)^{k}(k+l)!}{k!(2 k+2 l+1)!} \rho^{2 k} . \tag{20}
\end{align*}
$$

To write out the first three terms,

$$
\begin{equation*}
=\frac{\rho^{l}}{(2 l+1)!!}\left[1-\frac{\rho^{2}}{2(2 l+3)}+\frac{\rho^{4}}{8(2 l+5)(2 l+3)}-\cdots\right] . \tag{21}
\end{equation*}
$$

It suggests that the leading term is a good approximation when $\rho \ll 2 l^{1 / 2}$.
Similarly, the expression for $n_{l}(\rho)$ can also be simplified,

$$
\begin{align*}
n_{l}(\rho) & =-\frac{1}{2^{l} \rho^{l+1}} \sum_{n=l}^{l} \frac{(2 l-2 n)!}{n!(l-n)!} \rho^{2 n}+\frac{\rho^{l}}{2^{l+1}} \sum_{k=0}^{\infty} \frac{(-1)^{k} k!}{(2 k+1)!(k+l+1)!} \rho^{2 k+1} \\
& =-\frac{1}{2^{l} \rho^{l+1}}\left(\sum_{n=l}^{l} \frac{(2 l-2 n)!}{n!(l-n)!} \rho^{2 n}-\frac{1}{2} \sum_{k=0}^{\infty} \frac{(-1)^{k} k!}{(2 k+1)!(k+l+1)!} \rho^{2 k+2 l+2}\right) \\
& =-\frac{1}{2^{l} \rho^{l+1}}\left(\sum_{n=l}^{l} \frac{(2 l-2 n)!}{n!(l-n)!} \rho^{2 n}+\frac{1}{2} \sum_{n=l+1}^{\infty} \frac{(-1)^{n+l}(n-l-1)!}{(2 n-2 l-1)!n!} \rho^{2 n}\right) \\
& =-\frac{1}{2^{l} \rho^{l+1}}\left(\sum_{n=l}^{l} \frac{(2 l-2 n)!}{n!(l-n)!} \rho^{2 n}+\sum_{n=l+1}^{\infty} \frac{(-1)^{n+l}(n-l)!}{(2 n-2 l)!n!} \rho^{2 n}\right) \\
& =-\frac{1}{2^{l} \rho^{l+1}} \sum_{n=l}^{l} \frac{(-1)^{n}}{n!} \frac{\Gamma(2 l-2 n+1)}{\Gamma(l-n+1)} \rho^{2 n} . \tag{22}
\end{align*}
$$

To write out the first three terms,

$$
\begin{equation*}
=-\frac{(2 l-1)!!}{\rho^{l+1}}\left[1+\frac{\rho^{2}}{2(2 l-1)}+\frac{\rho^{4}}{8(2 l-1)(2 l-3)}+\cdots\right] . \tag{23}
\end{equation*}
$$

It suggests that the leading term is a good approximation when $\rho \ll 2 l^{1 / 2}$.

3 Asymptotic Behavior

Eqs. (819) give the asymptotic behaviors of $h_{l}^{(1)}$ for $\rho \rightarrow \infty$:

$$
\begin{equation*}
h_{l}^{(1)} \sim-i \frac{e^{i \rho}}{\rho}(-i)^{l}=-i \frac{e^{i(\rho-l \pi / 2)}}{\rho} . \tag{24}
\end{equation*}
$$

By taking linear combinations, we also find

$$
\begin{align*}
& j_{l} \sim \frac{\sin (\rho-l \pi / 2)}{\rho}, \tag{25}\\
& n_{l} \sim-\frac{\cos (\rho-l \pi / 2)}{\rho} . \tag{26}
\end{align*}
$$

These expressions are good approximations when $\rho \gg l^{2}$. As seen in the next section, there are better approximations when $\rho \geq l \geq 1$.

4 Large l Behavior

Starting from the integral from Eq. (10), we use the steepest descent method to find the large l behavior. Changing the variable $t=l \tau$,

$$
\begin{align*}
j_{l}(\rho)= & \frac{1}{2} \frac{(\rho / 2)^{l}}{l!} \int_{-1}^{1} e^{i \rho t}\left(1-t^{2}\right)^{l} d t \\
= & \frac{1}{2} \frac{(\rho / 2)^{l}}{l!} \int_{-1 / l}^{1 / l} e^{l\left(\log \left(1-l^{2} \tau^{2}\right)+i \rho \tau\right)} l d \tau \\
= & \frac{1}{2} \frac{(\rho / 2)^{l}}{l!} \int_{-1 / l}^{1 / l} \exp \left[-l+\sqrt{l^{2}-\rho^{2}}+l \log \frac{2 l\left(l-\sqrt{l^{2}-\rho^{2}}\right)}{\rho^{2}}\right. \\
& \left.-\frac{l \rho^{2} \sqrt{l^{2}-\rho^{2}}}{2\left(l-\sqrt{l^{2}-\rho^{2}}\right)}\left(\tau-i \frac{l-\sqrt{l^{2}-\rho^{2}}}{l \rho}\right)^{2}+O(\Delta \tau)^{3}\right] l d \tau \\
\simeq & \frac{1}{2} \frac{(\rho / 2)^{l}}{\sqrt{2 \pi l} l^{l} e^{-l}} e^{-l} e^{\sqrt{l^{2}-\rho^{2}}}\left(\frac{2 l\left(l-\sqrt{l^{2}-\rho^{2}}\right)}{\rho^{2}}\right)^{l}\left(\frac{2 \pi\left(l-\sqrt{l^{2}-\rho^{2}}\right)}{l \rho^{2} \sqrt{l^{2}-\rho^{2}}}\right)^{1 / 2} l \\
= & \frac{1}{2 \rho} e^{\sqrt{l^{2}-\rho^{2}}}\left(\frac{l-\sqrt{l^{2}-\rho^{2}}}{\rho}\right)^{l}\left(\frac{l-\sqrt{l^{2}-\rho^{2}}}{\sqrt{l^{2}-\rho^{2}}}\right)^{1 / 2} . \tag{27}
\end{align*}
$$

This expression works very well as long as $l \gg 1$ and $\rho \leq l$.

Starting from the integral from Eq. (5), we use the steepest descent method to find the large l behavior. Change the variable $t=i l \tau$,

$$
\begin{align*}
& h_{l}^{(1)}(\rho)=-\frac{(\rho / 2)^{l}}{l!} \int_{+1}^{i \infty} e^{i \rho t}\left(1-t^{2}\right)^{l} d t \\
& =-i l \frac{(\rho / 2)^{l}}{l!} \int_{-i / l}^{\infty} \exp \left[-l-\sqrt{l^{2}-\rho^{2}}+l \log \frac{2 l\left(l+\sqrt{l^{2}-\rho^{2}}\right)}{\rho^{2}}\right. \\
& \left.\quad-\frac{l \rho^{2} \sqrt{l^{2}-\rho^{2}}}{2\left(l+\sqrt{l^{2}-\rho^{2}}\right)}\left(\tau-\frac{l+\sqrt{l^{2}-\rho^{2}}}{l \rho}\right)^{2}+O(\Delta \tau)^{3}\right] \\
& \simeq \tag{28}\\
& \simeq-i e^{-\sqrt{l^{2}-\rho^{2}}}\left(\frac{l+\sqrt{l^{2}-\rho^{2}}}{\rho}\right)^{l}\left(\frac{l+\sqrt{l^{2}-\rho^{2}}}{\rho^{2} \sqrt{l^{2}-\rho^{2}}}\right)^{1 / 2} .
\end{align*}
$$

Note that there are actually two saddle points,

$$
\begin{equation*}
\tau=\frac{l \pm \sqrt{l^{2}-\rho^{2}}}{l \rho} \tag{29}
\end{equation*}
$$

In the above calculation, we picked the saddle point with the negative sign with the steepest descent, while the other saddle point is what we picked for $j_{l}(\rho)$. Therefore,

$$
\begin{equation*}
n_{l}(\rho) \simeq-\frac{1}{\rho} e^{-\sqrt{l^{2}-\rho^{2}}}\left(\frac{l+\sqrt{l^{2}-\rho^{2}}}{\rho}\right)^{l}\left(\frac{l+\sqrt{l^{2}-\rho^{2}}}{\sqrt{l^{2}-\rho^{2}}}\right)^{1 / 2} \tag{30}
\end{equation*}
$$

This expression again works very well as long as $l \gg 1$ and $\rho \leq l$ (but not too close).

On the other hand, for $\rho \geq l \gg 1$, the saddle points above become complex. The contribution to the $h_{l}^{(1)}(\rho)$ is given by the saddle point $\tau=$ $\frac{l-i \sqrt{\rho^{2}-l^{2}}}{l \rho}$, and hence

$$
\begin{equation*}
h_{l}^{(1)}(\rho) \simeq \frac{1}{\rho} e^{i \sqrt{\rho^{2}-l^{2}}}\left(\frac{l-i \sqrt{\rho^{2}-l^{2}}}{\rho}\right)^{l}\left(\frac{l-i \sqrt{\rho^{2}-l^{2}}}{i \sqrt{\rho^{2}-l^{2}}}\right)^{1 / 2} \tag{31}
\end{equation*}
$$

This works very well as long as $l \gg 1$ and $\rho \geq l$ (but not too close). $j_{l}\left(n_{l}\right)$ is given by the real (imaginary) part of $h_{l}^{(1)}(\rho)$. In practice, this form works remarkably well even for $l=1$.

Figure 1: Comparison of the large ρ behavior and the large l behavior of $j_{l}(\rho)$ to the exact result. The large l behavior is a very good approximation for $\rho \geq 105>100=l$, while the large ρ behavior is still a poor approximation unless $\rho>O\left(l^{2}\right)$.

It is interesting to note that this asymptotic behavior of $h_{l}^{(1)}(\rho)$ is what you expect from the semi-classical approximation for the free-particle wave function. The classical action for a free particle is

$$
\begin{equation*}
S(r)=\hbar \int_{l / k}^{r} \sqrt{k^{2}-\frac{l^{2}}{r^{\prime 2}}} d r^{\prime}=\hbar \sqrt{(k r)^{2}-l^{2}}-2 l \arctan \sqrt{\frac{k r-l}{k r+l}} \tag{32}
\end{equation*}
$$

and hence

$$
\begin{equation*}
e^{i S(r) / \hbar}=e^{i \sqrt{(k r)^{2}-l^{2}}}\left(\frac{l-i \sqrt{(k r)^{2}-l^{2}}}{k r}\right)^{l}, \tag{33}
\end{equation*}
$$

which agrees with the large l behavior above except for the last factor which comes from the lowest-order quantum correction.

When $\rho \simeq l \gg 1$, two saddle points collide and I don't know what to do.

5 Recursion Formulae

Starting from Eq. (5), we take the derivative

$$
\begin{equation*}
\frac{d}{d \rho} h_{l}^{(1)}=\frac{l}{\rho} h_{l}^{(1)}-\frac{(\rho / 2)^{l}}{l!} \int_{+1}^{i \infty} e^{i \rho t} i t\left(1-t^{2}\right)^{l} d t \tag{34}
\end{equation*}
$$

The second term can be integrated by parts, and gives

$$
\begin{equation*}
=\frac{l}{\rho} h_{l}^{(1)}+\frac{\rho}{2} \frac{(\rho / 2)^{l}}{l!} \int_{+1}^{i \infty} e^{i \rho t}\left(1-t^{2}\right)^{l+1} d t=\frac{l}{\rho} h_{l}^{(1)}-h_{l+1}^{(1)} . \tag{35}
\end{equation*}
$$

In fact, other functions j_{l}, n_{l}, and $h_{l}^{(2)}$ all satisfy the same relation which can be easily checked. Referring to all of them generically as $z_{l}(\rho)$, we find the recursion formula

$$
\begin{equation*}
z_{l}^{\prime}=\frac{l}{\rho} z_{l}-z_{l+1} \tag{36}
\end{equation*}
$$

Because $z_{l}(\rho)$ satisfies the differential equation Eq. 2 , we can combine it with the above recursion relation and find

$$
\begin{align*}
0 & =\left(\frac{d^{2}}{d \rho^{2}}+\frac{2}{\rho} \frac{d}{d \rho}-\frac{l(l+1)}{\rho^{2}}+1\right) z_{l} \\
& =z_{l}-\frac{2 l+3}{\rho} z_{l+1}+z_{l+2} \tag{37}
\end{align*}
$$

Relabeling l to $l-1$, we obtain

$$
\begin{equation*}
z_{l-1}+z_{l+1}=\frac{2 l+1}{\rho} z_{l} . \tag{38}
\end{equation*}
$$

Finally, combining the two recursion relations, we also obtain

$$
\begin{equation*}
z_{l}^{\prime}=z_{l-1}-\frac{l+1}{\rho} z_{l} . \tag{39}
\end{equation*}
$$

6 Plane Wave Expansion

The non-trivial looking formula we used in the class

$$
\begin{equation*}
e^{i k z}=\sum_{l=0}^{\infty}(2 l+1) i^{l} j_{l}(k r) P_{l}(\cos \theta) \tag{40}
\end{equation*}
$$

can be obtained quite easily from the integral representation Eq. (10). The point is that one can keep integrating it in parts. By integrating $e^{i \rho t}$ factor and differentiating $\left(1-t^{2}\right)^{l}$ factor, the boundary terms at $t= \pm 1$ always vanish up to l-th time because of the $\left(1-t^{2}\right)^{l}$ factor. Therefore,

$$
\begin{equation*}
j_{l}=\frac{1}{2} \frac{(\rho / 2)^{l}}{l!} \int_{-1}^{1} \frac{1}{(i \rho)^{l}} e^{i \rho t}\left(-\frac{d}{d t}\right)^{l}\left(1-t^{2}\right)^{l} d t \tag{41}
\end{equation*}
$$

Note that the definition of the Legendre polynomials is

$$
\begin{equation*}
P_{l}(t)=\frac{1}{2^{l}} \frac{1}{l!} \frac{d^{l}}{d t^{l}}\left(t^{2}-1\right)^{l} \tag{42}
\end{equation*}
$$

Using this definition, the spherical Bessel function can be written as

$$
\begin{equation*}
j_{l}=\frac{1}{2} \frac{1}{i^{l}} \int_{-1}^{1} e^{i \rho t} P_{l}(t) d t \tag{43}
\end{equation*}
$$

Then we use the fact that the Legendre polynomials form a complete set of orthogonal polynomials in the interval $t \in[-1,1]$. Noting the normalization

$$
\begin{equation*}
\int_{-1}^{1} P_{n}(t) P_{m}(t) d t=\frac{2}{2 n+1} \delta_{n, m} \tag{44}
\end{equation*}
$$

the orthonormal basis is $P_{n}(t) \sqrt{(2 n+1) / 2}$, and hence

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{2 n+1}{2} P_{n}(t) P_{n}\left(t^{\prime}\right)=\delta\left(t-t^{\prime}\right) \tag{45}
\end{equation*}
$$

By multipyling Eq. (43) by $P_{l}\left(t^{\prime}\right)(2 l+1) / 2$ and summing over n,

$$
\begin{equation*}
\sum_{l=0}^{\infty} 2 i^{l} \frac{2 l+1}{2} P_{l}\left(t^{\prime}\right) j_{l}(\rho)=\int_{-1}^{1} e^{i \rho t} \sum_{n=0}^{\infty} \frac{2 l+1}{2} P_{l}\left(t^{\prime}\right) P_{l}(t) d t=e^{i \rho t^{\prime}} \tag{46}
\end{equation*}
$$

By setting $\rho=k r$ and $t^{\prime}=\cos \theta$, we prove Eq. (40).
If the wave vector is pointing at other directions than the positive z axis, the formula Eq. 40) needs to be generalized. Noting $Y_{l}^{0}(\theta, \phi)=$ $\sqrt{(2 l+1) / 4 \pi} P_{l}(\cos \theta)$, we find

$$
\begin{equation*}
e^{i \vec{k} \cdot \vec{x}}=4 \pi \sum_{l=0}^{\infty} i^{l} j_{l}(k r) \sum_{m=-l}^{l} Y_{l}^{m *}\left(\theta_{\vec{k}}, \phi_{\vec{k}}\right) Y_{l}^{m}\left(\theta_{\vec{x}}, \phi_{\vec{x}}\right) \tag{47}
\end{equation*}
$$

7 Delta-Function Normalization

An important consequence of the identity Eq. (47) is the innerproduct of two spherical Bessel functions. We start with

$$
\begin{equation*}
\int d \vec{x} e^{i \vec{k} \cdot \vec{x}} e^{-i \vec{k}^{\prime} \cdot \vec{x}}=(2 \pi)^{3} \delta\left(\vec{k}-\vec{k}^{\prime}\right) \tag{48}
\end{equation*}
$$

Using Eq. 47) in the l.h.s of this equation, we find

$$
\begin{align*}
& \int d \vec{x} e^{i \vec{k} \cdot \vec{x}} e^{-i \vec{k}^{\prime} \cdot \vec{x}} \\
& =\sum_{l, m} \sum_{l^{\prime}, m^{\prime}}(4 \pi)^{2} \int d \Omega_{\vec{x}} d r r^{2} Y_{l}^{m *}\left(\Omega_{\vec{k}}\right) Y_{l}^{m}\left(\Omega_{\vec{x}}\right) Y_{l^{\prime}}^{m^{\prime} *}\left(\Omega_{\vec{x}}\right) Y_{l^{\prime}}^{m^{\prime}}\left(\Omega_{\vec{k}^{\prime}}\right) j_{l}(k r) j_{l^{\prime}}\left(k^{\prime} r\right) \\
& =\sum_{l, m}(4 \pi)^{2} \int d r r^{2} j_{l}(k r) j_{l}\left(k^{\prime} r\right) Y_{l}^{m *}\left(\Omega_{\vec{k}}\right) Y_{l}^{m}\left(\Omega_{\overrightarrow{k^{\prime}}}\right) . \tag{49}
\end{align*}
$$

On the other hand, the r.h.s. of Eq. (48) is

$$
\begin{align*}
(2 \pi)^{3} \delta\left(\vec{k}-\vec{k}^{\prime}\right) & =(2 \pi)^{3} \frac{1}{k^{2}} \delta\left(k-k^{\prime}\right) \delta\left(\Omega_{\vec{k}}-\Omega_{\vec{k}^{\prime}}\right) \\
& =(2 \pi)^{3} \frac{1}{k^{2} \sin \theta} \delta\left(k-k^{\prime}\right) \delta\left(\theta-\theta^{\prime}\right) \delta\left(\phi-\phi^{\prime}\right) \tag{50}
\end{align*}
$$

Comparing Eq. 49) and (50) and noting

$$
\begin{equation*}
\sum_{l, m} Y_{l}^{m *}\left(\Omega_{\vec{k}}\right) Y_{l}^{m}\left(\Omega_{\vec{k}^{\prime}}\right)=\delta\left(\Omega_{\vec{k}}-\Omega_{\vec{k}^{\prime}}\right) \tag{51}
\end{equation*}
$$

we find

$$
\begin{equation*}
\int_{0}^{\infty} d r r^{2} j_{l}(k r) j_{l}\left(k^{\prime} r\right)=\frac{\pi}{2 k^{2}} \delta\left(k-k^{\prime}\right) \tag{52}
\end{equation*}
$$

8 Mathematica

In Mathematica, spherical Bessel functions are not defined but the usual Bessel functions are. The $j_{l}(z)$ is obtained by

$$
\sqrt{\frac{\pi}{2 z}} \operatorname{Bessel} \mathrm{~J}\left[1+\frac{1}{2}, \mathrm{z}\right]
$$

and $n_{l}(z)$ by

$$
\sqrt{\frac{\pi}{2 z}} \operatorname{BesselY}\left[1+\frac{1}{2}, z\right] .
$$

You may actually want to use

$$
\text { PowerExpand }\left[\sqrt{\frac{\pi}{2 z}} \operatorname{BesselJ}\left[1+\frac{1}{2}, z\right]\right]
$$

etc to get rid of half-odd powers.

[^0]: ${ }^{1}$ Note that my notation for n_{l} differs from Sakurai's by a sign as seen in Eq. (7.6.52) on page 409. I'm sorry for that, but I stick with my convention, which was taken from Messiah.

