HW #9 (221B), due Apr 8, 4pm

1. Lookup levels of 210Pb, 210Bi, and 210Po, and explain the low-lying excitations using the shell model.

2. Lookup levels of 17O, and 17F, and explain the low-lying excitations using the shell model.

3. Consider $2s$ and $2p$ wave functions of the hydrogen atom. Answer the following questions. Try to use Mathematica for visualization as much as possible.

 (a) Show that one can take linear combinations of states $|2p, m = \pm 1\rangle$ to obtain orbitals elongated along x or y axis (or equivalently, $\phi = 0$ and $\phi = \pi/2$ directions).

 (b) Show that one can further combine $|2s\rangle$ state to obtain orbitals elongated along $\phi = 0$, $\phi = 2\pi/3$, and $\phi = 4\pi/3$ directions. They are sp^2 mixed orbitals used for carbon atoms in ethylene, etc.

 (c) Similarly, show that one can combine all three $2p$ states and $2p$ state to obtain orbitals elongated along the axes of a tetrahedron. They are sp^3 mixed orbitals used in methane etc.

4. Consider the Lagrangian of a harmonic oscillator

 \[L = \frac{1}{2} m \dot{x}^2 - \frac{1}{2} m \omega^2 x^2. \]

 (a) Rewrite the Lagrangian using $p = \partial L/\partial \dot{x}$ and eliminate \dot{x}.

 (b) Further rewrite it using $a = \sqrt{\frac{m \omega}{2\hbar}} x + i \frac{1}{\sqrt{2m\hbar\omega}} p$ and a^\dagger.

 (c) Regarding a as the canonical coordinate, and comparing the Lagrangian to the general form $p\dot{q} - H(p, q)$, observe that the conjugate momentum is $i\hbar a^\dagger$ and derive the canonical commutation relation for $[a, a^\dagger]$ as well as the Hamiltonian in quantum mechanics.

 (d) Instead of using the usual canonical commutation relation, use an anti-commutation relation $\{a, a^\dagger\} = 1$, $\{a, a\} = \{a^\dagger, a^\dagger\} = 0$. Show that the Hilbert space consists of only two states, $|0\rangle$ and $|1\rangle = a^\dagger |0\rangle$. What are their energy eigenvalues?