HW \#8 (221B), due Apr 1, 4pm

1. Consider a one-dimensional problem of two heavy particles at $x_{1}$ and $x_{2}$ of mass $M$ and one light particle at $x_{3}$ of mass $m$ attached by springs, with the light particle in the middle: $x_{1}<x_{3}<x_{2}$. The Hamiltonian of the system is

$$
\begin{equation*}
H=\frac{p_{1}^{2}}{2 M}+\frac{p_{2}^{2}}{2 M}+\frac{p_{3}^{2}}{2 m}+\frac{1}{2} k\left(x_{3}-x_{1}-d\right)^{2}+\frac{1}{2} k\left(x_{2}-x_{3}-d\right)^{2} . \tag{1}
\end{equation*}
$$

Here, $d$ is the natural length of the spring and $k$ the spring constant. Answer the following questions.
(a) Use Bohr-Oppenheimer approximation to study the system. First, fix the positions of heavy particles $x_{1}$ and $x_{2}$, and find the energy eigenvalues in the $M \rightarrow \infty$ limit. Second, consider the energy eigenvalues (as a function of $x_{1}$ and $x_{2}$ ) as a potential energy for the heavy particles and work out energy eigenvalues for the heavy particles.
(b) One can also solve this system exactly. Identify the basic oscillation modes, rewrite the Hamiltonian in terms of them, and obtain the energy eigenvalues exactly.
(c) Compare two results and see what corrections are missed in BohrOppenheimer approximation.
2. Identify low-lying levels in ${ }^{14} \mathrm{C},{ }^{14} \mathrm{~N}$, and ${ }^{14} \mathrm{O}$ that correspond to $I=0$ and $I=1$ multiplets. Use http://ie.lbl.gov/TOI2003/LadderSearch.asp for energy levels.

