221B HW \#4, due Feb 11 (Fri), 4pm

1. Consider the hard sphere scattering. Work out the phase shift exactly for arbitrary l, and plot $\sin ^{2} \delta_{l}$ for $k a=0.1$ and $k a=100$. Explain the behavior using semi-classical arguments. Calculate the total cross section by summing up l from 0 to 200 .
2. Consider the spherical well potential

$$
V(r)= \begin{cases}-V_{0} & (r<a) \tag{1}\\ 0 & (r>a)\end{cases}
$$

Answer the following questions for the $l=0$ partial wave.
(a) Work out the conditions for the bound states. Plot the bound state energies as a function of V_{0}.
(b) Calculate the phase shift δ_{0} and the S-matrix $e^{2 i \delta_{0}}$.
(c) Show that the poles of the S-matrix on the upper half plane of k correspond precisely to the bound states.
(d) Plot the cross section σ_{0} as a function of $k a$ for a several values of V_{0} to show its behavior far away from, just below, exactly on, and just above the threshold bound state, and compare them to the geometric cross section $4 \pi a^{2}$.
3. Again for the spherical well potential and consider $l=1$.
(a) Consider a small momentum $k a=0.1$, and plot $\sin ^{2} \delta_{1}$ as the function of the potential depth V_{0}, and identify V_{0} at sharp peaks.
(b) Plot $\sin ^{2} \delta_{1}$ now as a function of k for fixed V_{0} found in the previous problem.
(c) Plot the radial wave function $R_{1}(r)$ for the combination of $k a$ and V_{0} that corresponds to the peak of the cross section.

