221B HW \#2, due Jan 28 (Fri), 4pm

1. Solve the one-dimensional time-independent Schrödinger equation with the potential $V=\mu \delta(x)$ (μ has the dimension of energy times length).
(a) Find the solution of the form $(k>0)$

$$
\psi_{k}(x)= \begin{cases}e^{i k x}+R e^{-i k x} & (x<0) \tag{1}\\ T e^{i k x} & (x>0)\end{cases}
$$

$R(T)$ is called reflection (transmission) coefficient. Verify that the unitarity relation $|R|^{2}+|T|^{2}=1$.
(b) Form the wave packet

$$
\begin{equation*}
\int d q \psi_{q}(x) e^{-(q-k)^{2} / 2 \sigma^{2}} e^{-i E_{q} t / \hbar} \tag{2}
\end{equation*}
$$

where $E_{q}=\hbar^{2} q^{2} / 2 m$. Watch the wave packet move in Mathematica. Assume that T and R are approximately constant within the Gaussian peak $|q-k| \lesssim \sigma$.
(c) To compare to the three-dimensional case, we can rewrite it as

$$
\psi_{k}(x)=e^{i k x}+ \begin{cases}f(\pi) i e^{-i k x} & (x<0) \tag{3}\\ f(0) i e^{i k x} & (x>0)\end{cases}
$$

The "total cross section" is defined by $\sigma=|f(\pi)|^{2}+|f(0)|^{2}$. Show the "optical theorem" $\sigma=2 \Im f(0)$ as a consequence of the unitarity relation without relying on the explicit solution.
2. Work out the probability current $\vec{\jmath}=\frac{\hbar}{2 m i}\left(\psi^{*} \vec{\nabla} \psi-\vec{\nabla} \psi^{*} \psi\right)$ for $\psi=e^{i \vec{k} \cdot \vec{x}}$ and $\psi=e^{i k r} / r$. Show that $\vec{\nabla} \cdot \vec{\jmath}$ vanishes for the former, while it is a delta-function at the origin for the latter.
3. Consider the classical hard sphere scattering. There is a hard (impenetrable) sphere of radius a fixed at the origin. You send in a point-like particle. Calculate the differential and total cross section.

