
221A Lecture Notes
Notes on Tensor Product

1 What is “Tensor”?

After discussing the tensor product in the class, I received many questions
what it means. I’ve also talked to Daniel, and he felt this is a subject he
had learned on the way here and there, never in a course or a book. I myself
don’t remember where and when I learned about it. It may be worth solving
this problem once and for all.

Apparently, Tensor is a manufacturer of fancy floor lamps. See
http://growinglifestyle.shop.com/cc.class/cc?pcd=7878065&ccsyn=13549.

For us, the word “tensor” refers to objects that have multiple indices. In
comparison, a “scalar” does not have an index, and a “vector” one index. It
appears in many different contexts, but this point is always the same.

2 Direct Sum

Before getting into the subject of tensor product, let me first discuss “direct
sum.” This is a way of getting a new big vector space from two (or more)
smaller vector spaces in the simplest way one can imagine: you just line them
up.

2.1 Space

You start with two vector spaces, V that is n-dimensional, and W that is
m-dimensional. The tensor product of these two vector spaces is n + m-
dimensional. Here is how it works.

Let {~e1, ~e2, · · · , ~en} be the basis system of V , and similarly {~f1, ~f2, · · · , ~fm}
that of W . We now define n + m basis vectors {~e1, · · · , ~en, ~f1, · · · , ~fm}. The
vector space spanned by these basis vectors is V ⊕W , and is called the direct
sum of V and W .
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2.2 Vectors

Any vector ~v ∈ V can be written as a linear combination of the basis vectors,
~v = v1~e1 + v2~e2 + · · ·+ vn~en. We normally express this fact in the form of a
column vector,

~v =


v1

v2
...

vn


V

n. (1)

Here, it is emphasized that this is an element of the vector space V , and the
column vector has n components. In particular, the basis vectors themselves
can be written as,

~e1 =


1
0
...
0


V

, ~e2 =


0
1
...
0


V

, · · · , ~en =


0
0
...
1


V

. (2)

If the basis system is orthonormal, i.e., ~ei ·~ej = δij, then vi = ~ei ·~v. Similarly
for any vector w, we can write

~w =


w1

w2
...

wn


W

m. (3)

The basis vectors are

~f1 =


1
0
...
0


W

, ~f2 =


0
1
...
0


W

, · · · , ~fm =


0
0
...
1


W

. (4)

The vectors are naturally elements of the direct sum, just by filling zeros

2



to the unused entries,

~v =



v1
...

vn

0
...
0




n + m, ~w =



0
...
0
w1
...

wm




n + m. (5)

One can also define a direct sum of two non-zero vectors,

~v ⊕ ~w =



v1
...

vn

w1
...

wm


=

(
~v
~w

)}
n + m, (6)

where the last expression is used to save space and it is understood that ~v
and ~w are each column vector.

2.3 Matrices

A matrix is mathematically a linear map from a vector space to another
vector space. Here, we specialize to the maps from a vector space to the
same one because of our interest in applications to quantum mechanics, A :
V → V , e.g.,

~v 7→ A~v, (7)

or 
v1

v2
...

vn


V

7−→


a11 a12 · · · a1n

a22 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


V


v1

v2
...

vn


V

. (8)

Similarly, B : W → W , and B : ~w 7→ B ~w.
On the direct sum space, the same matrices can still act on the vectors,

so that ~v 7→ A~v, and ~w 7→ B ~w. This matrix is written as A ⊕ B. This can
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be achieved by lining up all matrix elements in a block-diagonal form,

A⊕B =

(
A 0n×m

0m×n B

)
. (9)

For instance, if n = 2 and m = 3, and

A =

(
a11 a12

a21 a22

)
V

, B =

 b11 b12 b13

b21 b22 b23

b31 b32 b33


W

, (10)

where it is emphasized that A and B act on different spaces. Their direct
sum is

A⊕B =


a11 a12 0 0 0
a21 a22 0 0 0
0 0 b11 b12 b13

0 0 b21 b22 b23

0 0 b31 b32 b33

 . (11)

The reason why the block-diagonal form is appropriate is clear once you
act it on ~v ⊕ ~w,

(A⊕B)(~v⊕ ~w) =

(
A 0n×m

0m×n B

)(
~v
~w

)
=

(
A~v
B ~w

)
= (A~v)⊕(B ~w). (12)

If you have two matrices, their multiplications are done on each vector
space separately,

(A1 ⊕B1)(A2 ⊕B2) = (A1A2)⊕ (B1B2). (13)

Note that not every matrix on V ⊕ W can be written as a direct sum of a
matrix on V and another on W . There are (n+m)2 independent matrices on
V ⊕W , while there are only n2 and m2 matrices on V and W , respectively.
Remaining (n+m)2−n2−m2 = 2nm matrices cannot be written as a direct
sum.

Other useful formulae are

det(A⊕B) = (detA)(detB), (14)

Tr(A⊕B) = (TrA) + (TrB). (15)
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3 Tensor Product

The word “tensor product” refers to another way of constructing a big vector
space out of two (or more) smaller vector spaces. You can see that the spirit
of the word “tensor” is there. It is also called Kronecker product or direct
product.

3.1 Space

You start with two vector spaces, V that is n-dimensional, and W that
is m-dimensional. The tensor product of these two vector spaces is nm-
dimensional. Here is how it works.

Let {~e1, ~e2, · · · , ~en} be the basis system of V , and similarly {~f1, ~f2, · · · , ~fm}
that of W . We now define nm basis vectors ~ei ⊗ ~fj, where i = 1, · · · , n and
j = 1, · · · , m. Never mind what ⊗ means at this moment. We will be more
explicit later. Just regard it a symbol that defines a new set of basis vectors.
This is why the word “tensor” is used for this: the basis vectors have two
indices.

3.2 Vectors

We use the same notation for the column vectors as in Section 2.2.
The tensor product is bilinear , namely linear in V and also linear in W .

(If there are more than two vector spaces, it is multilinear .) What it implies

is that ~v ⊗ ~w = (
∑n

i vi~ei) ⊗ (
∑m

j wj
~fj) =

∑n
i

∑m
j viwj(~ei ⊗ ~fj). In other

words, it is a vector in V ⊗W , spanned by the basis vectors ~ei ⊗ ~fj, and the
coefficients are given by viwj for each basis vector.

One way to make it very explicit is to literally write it out. For example,
let us take n = 2 and m = 3. The tensor product space is nm = 6 dimen-
sional. The new basis vectors are ~e1 ⊗ ~f1, ~e1 ⊗ ~f2, ~e1 ⊗ ~f3, ~e2 ⊗ ~f1, ~e2 ⊗ ~f2,
and ~e2 ⊗ ~f3. Let us write them as a six-component column vector,

~e1 ⊗ ~f1 =



1
0
0
0
0
0


, ~e1 ⊗ ~f2 =



0
1
0
0
0
0


, ~e1 ⊗ ~f3 =



0
0
1
0
0
0


,
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~e2 ⊗ ~f1 =



0
0
0
1
0
0


, ~e2 ⊗ ~f2 =



0
0
0
0
1
0


, ~e2 ⊗ ~f3 =



0
0
0
0
0
1


. (16)

Here, I drew a horizontal lines to separate two sets of basis vectors, the first
set that is made of ~e1, and the second made of ~e2. For general vectors ~v and
~w, the tensor product is

~v ⊗ ~w =



v1w1

v1w2

v1w3

v2w1

v2w2

v2w3


. (17)

3.3 Matrices

A matrix is mathematically a linear map from a vector space to another
vector space. Here, we specialize to the maps from a vector space to the
same one because of our interest in applications to quantum mechanics, A :
V → V , e.g.,

~v 7−→ A~v, (18)

or 
v1

v2
...

vn


V

7−→


a11 a12 · · · a1n

a22 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann




v1

v2
...

vn


V

. (19)

On the tensor product space, the same matrix can still act on the vectors,
so that ~v 7→ A~v, but ~w 7→ ~w untouched. This matrix is written as A ⊗ I,
where I is the identity matrix. In the previous example of n = 2 and m = 3,
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the matrix A is two-by-two, while A⊗ I is six-by-six,

A⊗ I =



a11 0 0 a12 0 0
0 a11 0 0 a12 0
0 0 a11 0 0 a12

a21 0 0 a22 0 0
0 a21 0 0 a22 0
0 0 a21 0 0 a22


. (20)

The reason why this expression is appropriate is clear once you act it on
~v ⊗ ~w,

(A⊗ I)(~v ⊗ ~w) =



a11 0 0 a12 0 0
0 a11 0 0 a12 0
0 0 a11 0 0 a12

a21 0 0 a22 0 0
0 a21 0 0 a22 0
0 0 a21 0 0 a22





v1w1

v1w2

v1w3

v2w1

v2w2

v2w3



=



(a11v1 + a12v2)w1

(a11v1 + a12v2)w2

(a11v1 + a12v2)w3

(a21v1 + a22v2)w1

(a21v1 + a22v2)w2

(a21v1 + a22v2)w3


= (A~v)⊗ ~w. (21)

Clearly the matrix A acts only on ~v ∈ V and leaves ~w ∈ W untouched.
Similarly, the matrix B : W → W maps ~w 7→ B ~w. It can also act on

V ⊗W as I ⊗B, where

I ⊗B =



b11 b12 b13 0 0 0
b21 b22 b23 0 0 0
b31 b32 b33 0 0 0
0 0 0 b11 b12 b13

0 0 0 b21 b22 b23

0 0 0 b31 b32 b33


. (22)
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It acts on ~v ⊗ ~w as

(I ⊗B)(~v ⊗ ~w) =



b11 b12 b13 0 0 0
b21 b22 b23 0 0 0
b31 b32 b33 0 0 0
0 0 0 b11 b12 b13

0 0 0 b21 b22 b23

0 0 0 b31 b32 b33





v1w1

v1w2

v1w3

v2w1

v2w2

v2w3



=



v1(b11w1 + b12w2 + b13w3)
v1(b21w1 + b22w2 + b23w3)
v1(b31w1 + b32w2 + b33w3)
v2(b11w1 + b12w2 + b13w3)
v2(b21w1 + b22w2 + b23w3)
v2(b31w1 + b32w2 + b33w3)


= ~v ⊗ (B ~w). (23)

In general, (A⊗ I)(~v ⊗ ~w) = (A~v)⊗ ~w, and (I ⊗B)(~v ⊗ ~w) = ~v ⊗ (B ~w).
If you have two matrices, their multiplications are done on each vector

space separately,

(A1 ⊗ I)(A2 ⊗ I) = (A1A2)⊗ I,

(I ⊗B1)(I ⊗B2) = I ⊗ (B1B2),

(A⊗ I)(I ⊗B) = (I ⊗B)(A⊗ I) = (A⊗B). (24)

The last expression allows us to write out A⊗B explicitly,

A⊗B =



a11b11 a11b12 a11b13 a12b11 a12b12 a12b13

a11b21 a11b22 a11b23 a12b21 a12b22 a12b23

a11b31 a11b32 a11b33 a12b31 a12b32 a12b33

a21b11 a21b12 a21b13 a22b11 a22b12 a22b13

a21b21 a21b22 a21b23 a22b21 a22b22 a22b23

a21b31 a21b32 a21b33 a22b31 a22b32 a22b33


. (25)

It is easy to verify that (A⊗B)(~v ⊗ ~w) = (A~v)⊗ (B ~w).
Note that not every matrix on V ⊗W can be written as a tensor product

of a matrix on V and another on W .
Other useful formulae are

det(A⊗B) = (detA)m(detB)n, (26)

Tr(A⊗B) = (TrA)(TrB). (27)
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In Mathematica, you can define the tensor product of two square matrices
by

Needs["LinearAlgebra‘MatrixManipulation‘"];

KroneckerProduct[a_?SquareMatrixQ, b_?SquareMatrixQ] :=

BlockMatrix[Outer[Times, a, b]]

and then

KroneckerProduct[A,B]

3.4 Tensor Product in Quantum Mechanics

In quantum mechanics, we associate a Hilbert space for each dynamical de-
gree of freedom. For example, a free particle in three dimensions has three
dynamical degrees of freedom, px, py, and pz. Note that we can specify only
px or x, but not both, and hence each dimension gives only one degree of
freedom, unlike in classical mechanics where you have two. Therefore, mo-
mentum eigenkets Px|px〉 = px|px〉 from a basis system for the Hilbert space
Hx, etc.

The eigenstate of the full Hamiltonian is obtained by the tensor product
of momentum eigenstates in each direction,

|px, py, pz〉 = |px〉 ⊗ |py〉 ⊗ |pz〉. (28)

We normally don’t bother writing it this way, but it is nothing but a tensor
product.

The operator Px is then Px ⊗ I ⊗ I, and acts as

(Px⊗I⊗I)(|px〉⊗|py〉⊗|pz〉) = (Px|px〉)⊗(I|py〉)⊗(I|pz〉) = px|px〉⊗|py〉⊗|pz〉
(29)

and similarly for Py and Pz.
The Hamiltonian is actually

H =
1

2m

(
(Px ⊗ I ⊗ I)2 + (I ⊗ Py ⊗ I)2 + (I ⊗ I ⊗ Pz)

2
)
. (30)

Clearly we don’t want to write the tensor products explicitly each time!
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3.5 Addition of Angular Momenta

Using the example of n = 2 and m = 3, one can discuss the addition of
s = 1/2 and l = 1. V is two-dimensional, representing the spin 1/2, while
W is three-dimensional, representing the orbital angular momentum one. As
usual, the basis vectors are

|1
2
,
1

2
〉 =

(
1
0

)
, |1

2
,−1

2
〉 =

(
0
1

)
, (31)

for s = 1/2, and

|1, 1〉 =

 1
0
0

 , |1, 0〉 =

 0
1
0

 , |1,−1〉 =

 0
0
1

 , (32)

for l = 1. The matrix representations of the angular momentum operators
are

S+ = h̄

(
0 1
0 0

)
, S− = h̄

(
0 0
1 0

)
, Sz =

h̄

2

(
1 0
0 −1

)
, (33)

while

L+ = h̄

 0
√

2 0

0 0
√

2
0 0 0

 , L− = h̄

 0 0 0√
2 0 0

0
√

2 0

 , Lz = h̄

 1 0 0
0 0 0
0 0 −1

 .

(34)
On the tensor product space V ⊗W , they become

S+ ⊗ I = h̄



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, I ⊗ L+ = h̄



0
√

2 0 0 0 0

0 0
√

2 0 0 0
0 0 0 0 0 0

0 0 0 0
√

2 0

0 0 0 0 0
√

2
0 0 0 0 0 0


,

S− ⊗ I = h̄



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


, I ⊗ L− = h̄



0 0 0 0 0 0√
2 0 0 0 0 0

0
√

2 0 0 0 0
0 0 0 0 0 0

0 0 0
√

2 0 0

0 0 0 0
√

2 0


,
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Sz ⊗ I =
h̄

2



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


, I ⊗ Lz = h̄



1 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 −1


.

(35)

The addition of angular momenta is done simply by adding these matrices,
J±,z = S±,z ⊗ I + I ⊗ L±,z,

J+ = h̄



0
√

2 0 1 0 0

0 0
√

2 0 1 0
0 0 0 0 0 1

0 0 0 0
√

2 0

0 0 0 0 0
√

2
0 0 0 0 0 0


,

J− = h̄



0 0 0 0 0 0√
2 0 0 0 0 0

0
√

2 0 0 0 0
1 0 0 0 0 0

0 1 0
√

2 0 0

0 0 1 0
√

2 0


,

Jz = h̄



3
2

0 0 0 0 0
0 1

2
0 0 0 0

0 0 −1
2

0 0 0
0 0 0 1

2
0 0

0 0 0 0 −1
2

0
0 0 0 0 0 −3

2


. (36)

It is clear that

|3
2
,
3

2
〉 =



1
0
0
0
0
0


, |3

2
,−3

2
〉 =



0
0
0
0
0
1


. (37)
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They satisfy J+|32 ,
3
2
〉 = J−|32 ,−

3
2
〉 = 0. By using the general formula

J±|j, m〉 =
√

j(j + 1)−m(m± 1)|j, m± 1〉, we find

J−|
3

2
,
3

2
〉 =



0√
2

0
1
0
0


=
√

3|3
2
,
1

2
〉, J+|

3

2
,−3

2
〉 =



0
0
1
0√
2

0


=
√

3|3
2
,−1

2
〉.

(38)
We normally write them without using column vectors,

J−|
3

2
,
3

2
〉 = J−|

1

2
,
1

2
〉 ⊗ |1, 1〉

= |1
2
,−1

2
〉 ⊗ |1, 1〉+

√
2|1

2
,
1

2
〉 ⊗ |1, 0〉 =

√
3|3

2
,
1

2
〉, (39)

J+|
3

2
,−3

2
〉 = J+|

1

2
,−1

2
〉 ⊗ |1,−1〉

= |1
2
,
1

2
〉 ⊗ |1,−1〉+

√
2|1

2
,−1

2
〉 ⊗ |1, 0〉 =

√
3|3

2
,−1

2
〉. (40)

Their orthogonal linear combinations belong to the j = 1/2 representation,

|1
2
,
1

2
〉 =

1√
3



0
1
0

−
√

2
0
0


, |1

2
,−1

2
〉 =

1√
3



0
0√
2

0
−1
0


. (41)

It is easy to verify J+|12 ,
1
2
〉 = J−|12 ,−

1
2
〉 = 0, and J−|12 ,

1
2
〉 = |1

2
,−1

2
〉.

Now we can go to a new basis system by a unitary rotation

U =



1 0 0 0 0 0

0
√

2
3

0 1√
3

0 0

0 0 1√
3

0
√

2
3

0

0 0 0 0 0 1

0 1√
3

0 −
√

2
3

0 0

0 0
√

2
3

0 − 1√
3

0


. (42)
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This matrix puts transpose of vectors in successive rows so that the vectors
of definite j and m are mapped to simply each component of the vector,

U |3
2
,
3

2
〉 =



1
0
0
0
0
0


, U |3

2
,
1

2
〉 =



0
1
0
0
0
0


, U |3

2
,−1

2
〉 =



0
0
1
0
0
0


, U |3

2
,−3

2
〉 =



0
0
0
1
0
0


,

U |1
2
,
1

2
〉 =



0
0
0
0
1
0


, U |3

2
,
3

2
〉 =



0
0
0
0
0
1


. (43)

For the generators, we find

UJzU
† = h̄



3
2

0 0 0 0 0
0 1

2
0 0 0 0

0 0 −1
2

0 0 0
0 0 0 −3

2
0 0

0 0 0 0 1
2

0
0 0 0 0 0 −1

2


, (44)

UJ+U † = h̄



0
√

3 0 0 0 0
0 0 2 0 0 0

0 0 0
√

3 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


, (45)

UJ−U † = h̄



0 0 0 0 0 0√
3 0 0 0 0 0

0 2 0 0 0 0

0 0
√

3 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0


. (46)

Here, the matrices are written in a block-diagonal form. What we see here
is that this space is actually a direct sum of two representations j = 3/2 and
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j = 1/2. In other words,

V1/2 ⊗ V1 = V3/2 ⊕ V1/2. (47)

This is what we do with Clebsch–Gordan coefficients. Namely that the
Clebsch–Gordan coefficients define a unitary transformation that allow us
to decompose the tensor product space into a direct sum of irreducible rep-
resentations of the angular momentum. As a mnemonic, we often write it
as

2⊗ 3 = 4⊕ 2. (48)

Here, the numbers refer to the dimensionality of each representation 2j + 1.
If I replace ⊗ by × and ⊕ by +, my eight-year old daughter can confirm that
this equation is true. The added meaning here is that the right-hand side
shows a specific way how the tensor product space decomposes to a direct
sum.
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