
221A Lecture Notes
Supplemental Material on Harmonic Oscillator

1 Number-Phase Uncertainty

To discuss the harmonic oscillator with the Hamiltonian

H =
p2

2m
+

1

2
mω2x2, (1)

we have defined the annihilation operator

a =

√
mω

2h̄

(
x+

ip

mω

)
, (2)

the creation operator a†, and the number operator N = a†a.
In some discussions, it is useful to define the “phase” operator Θ by

a = eiΘ
√
N, a† =

√
Ne−iΘ. (3)

Obviously the phase is ill-defined when N = 0, but apart from that, it is
a useful notion. It is particularly useful when we discuss the classical limit
N � 1.

One can define the “phase eigenstate”

|θ〉 =
∞∑

n=1

einθ|n〉. (4)

By acting the phase operator eiΘ = a 1√
N

,

eiΘ|θ〉 = a
1√
N

∞∑
n=1

einθ|n〉 =
∞∑

n=1

einθ|n− 1〉

=
∞∑

m=0

ei(m+1)θ|m〉 = |0〉+ eiθ|θ〉. (5)

It is almost an eigenstate of the phase operator, the failure due to the obvious
problem with n = 0 state as anticipated from its definition. We can also
calculate the inner products

〈θ′|θ〉 =
∞∑

n=1

∞∑
m=1

〈m|e−imθ′einθ|n〉 =
∞∑

n=1

ein(θ−θ′). (6)
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This is almost the delta function

δ(θ − θ′) =
1

2π

+∞∑
n=−∞

ein(θ−θ′). (7)

The number eigenstate is expressed correspondingly as

|n〉 =
∫ 2π

0
dθe−inθ|θ〉, (8)

which works for all n except for n = 0.
Again ignoring the subtlety with the n = 0 state, we can derive the

number-phase uncertainty principle. Study the commutator

[N, eiΘ] = [N, a
1√
N

] = [N, a]
1√
N

= −a 1√
N

= −eiΘ. (9)

Therefore, roughly speaking,

N = i
∂

∂Θ
. (10)

Indeed, this makes sense on the “phase eigenstate,”

〈θ|N =
∞∑

n=1

e−inθ〈n|n = i
∂

∂θ
〈θ|. (11)

Therefore, it leads to the “canonical commutation relation”

[N,Θ] = i, (12)

leading to the uncertainty principle

∆N∆Θ ≥ 1

2
. (13)

2 Coherent State of Harmonic Oscillator

I’ve expanded discussions on the coherent state beyond Sakurai. Here is my
lecture note on this subject.

We saw that the uncertainty of the state |k〉 is actually larger than the
minimum uncertainty

∆x∆p =
h̄

2
(2k + 1). (14)
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It appears odd that states with larger k, which we expect to behave more
classicaly, are more uncertain. Moreover, expectation values of x and p vanish
for energy eigenstates

〈k|x|k〉 = 0, 〈k|p|k〉 = 0. (15)

Therefore even for large k, the energy eigenstates do not share characteristics
we expect for classical oscillators.

But how do we make a classical oscillator actually oscillate? Let’s say we
are talking about a pendulum. To make it oscillate, what we do is to exert a
force on it, pull the pendulum up, make sure the pendulum is settled in your
hand, and release it. Namely, pull, hold, and release. Why not do the same
in quantum mechanics?

To pull a pendulum, we have to add an additional term to the potential

V =
1

2
mω2x2 − Fx, (16)

where F is the force we exert on the pendulum. Because the added term is
linear in x, we can complete the square

V =
1

2
mω2(x− x0)

2 − 1

2
mω2x2

0, (17)

so that the pendulum settles to the position x0 6= 0. The force for this
purpose is given by F = mω2x0. Because the pulled pendulum still has a
quadratic potential, it is a modified harmonic oscillator. It settles to a ground
state |0〉′, which is annihilated by the modified annihilation operator

a′ =

√
mω

2h̄

(
(x− x0) +

ip

mω

)
= a−

√
mω

2h̄
x0. (18)

Therefore, the new ground state satisfies the equation

0 = a′|0〉′ =
(
a−

√
mω

2h̄
x0

)
|0〉′. (19)

In other words,

a|0〉′ =

√
mω

2h̄
x0|0〉′. (20)

This is an eigenequation for the annihilation operator a.

3



In general, the eigenstates for the annilation operator can be found as fol-
lows. Note that the annihilation operator is not Hermitian, and its eigenvalue
does not have to be real. Define

efa†|0〉 =
∞∑

n=0

fn

n!
(a†)n|0〉 =

∞∑
n=0

fn

√
n!
|n〉, (21)

for a complex number f . If you act the annihilation operator on this state,

a
(
efa†|0〉

)
=

∞∑
n=0

fn

√
n!
a|n〉 =

∞∑
n=1

fn

√
n!

√
n|n−1〉 =

∞∑
n=1

fn√
(n− 1)!

|n−1〉. (22)

We used the fact that n = 0 state does not contribute because it cannot be
lowered by the annihilation operator. Changing the dummy index n to n+1,

=
∞∑

n=0

fn+1

√
n!
|n〉 = f

∞∑
n=0

fn

√
n!
|n〉 = f

(
efa†|0〉

)
. (23)

Therefore, this state has an eigenvalue f for the annihilation operator. We
could have guessed it. The commutation relation [a, a†] = 1 says that roughly
speaking a = ∂/∂a†. Therefore, acting a just pulls out the exponent f .

We have not normalized the state yet. Working out the norm,

∣∣∣efa†|0〉
∣∣∣2 =

∑
n,m

〈n| f
∗n

√
n!

fm

√
m!
|m〉 =

∑
n

(f ∗f)n

n!
= ef∗f . (24)

Therefore, the following state is a normalized eigenstate of the annihilation
operator

|f〉 = e−|f |
2/2efa†|0〉, a|f〉 = f |f〉. (25)

This type of state is called coherent state.
Coming back to our problem, the pendulum just before the release is

therefore given by the coherent state

|
√
mω

2h̄
x0〉. (26)

Now the interest is in its time evolution. At t = 0, we release the pendulum.
In other words, we let the state evolve according to the original Hamiltonian
without an additional force. We can address the time evolution in Heisenberg
picture easier than in Schrödinger picture.
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In Heisenberg picture, let us first study the equation of motion for the
annihilation and creation operators. BecauseH = h̄ω(a†a+ 1

2
) and [a, a†] = 1,

we find

ih̄
d

dt
a = [a,H] = h̄ωa. (27)

Solving this equation is trivial,

a(t) = a(0)e−iωt. (28)

Similarly, we find
a†(t) = a†(0)eiωt. (29)

Solving the definition of the creation, annihilation operators backwards, we
find the position and momentum operators

x =

√
h̄

2mω
(a+ a†), p = −i

√
mh̄ω

2
(a− a†). (30)

Their time-dependence is then immediately obtained as

x(t) =

√
h̄

2mω
(ae−iωt + a†eiωt), p(t) = −i

√
mh̄ω

2
(ae−iωt − a†eiωt). (31)

On a coherent state, they have expectation values

〈f |x(t)|f〉 =

√
h̄

2mω
(fe−iωt + f ∗eiωt), (32)

〈f |p(t)|f〉 = −i
√
mh̄ω

2
(fe−iωt − f ∗eiωt). (33)

Note that I used 〈f |a† = (a|f〉)† = (f |f〉)† = 〈f |f ∗. Specializing to the

released pendulum, we have f =
√

mω
2h̄
x0, and hence

〈f |x(t)|f〉 = x0 cosωt, (34)

〈f |p(t)|f〉 = −mωx0 sinωt. (35)

This result is the same as the classical pendulum.
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Another important property of coherent states is that they have the min-
imum uncertainty. We can work it out easily in the following way.

〈f |x|f〉 =

√
h̄

2mω
〈f |a+ a†|f〉 =

√
h̄

2mω
(f + f ∗), (36)

〈f |p|f〉 = −i
√
mh̄ω

2
〈f |a− a†|f〉 = −i

√
mh̄ω

2
(f − f ∗), (37)

〈f |x2|f〉 =
h̄

2mω
〈f |(a+ a†)2|f〉 =

h̄

2mω
(f 2 + f ∗2 + (f ∗f + 1) + f ∗f), (38)

〈f |p2|f〉 = −mh̄ω
2

〈f |(a− a†)2|f〉 = −mh̄ω
2

(f 2 + f ∗2 − (f ∗f + 1)− f ∗f).

(39)

Therefore, we find

(∆x)2 = 〈f |x2|f〉 − (〈f |x|f〉)2 =
h̄

2mω
, (40)

(∆p)2 = 〈f |p2|f〉 − (〈f |p|f〉)2 =
mh̄ω

2
. (41)

Finally, we obtain

∆x∆p =
h̄

2
, (42)

indeed the minimum uncertainty state.
To sum it up, the coherent state represents the closest approximation of a

classical oscillator, with the minimum uncertainty and oscillating expectation
value of the position and the momentum.

We can obtain the same result in the Schrödinger picture, which is a litte
more technical than in the Heisenberg picture. The time evolution of the
coherent state can be obtained as

e−iHt/h̄|f〉 = e−iHt/h̄efa†|0〉e−|f |2/2

= e−iHt/h̄efa†eiHt/h̄e−iHt/h̄|0〉e−|f |2/2

= efe−iHt/h̄a†eiHt/h̄

e−i h̄ω
2

t/h̄|0〉e−|f |2/2

= efa†e−iωt|0〉e−|f |2/2e−iωt/2

= |fe−iωt〉e−iωt/2. (43)
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Therefore the expectation values of the postion and momentum operators
are

〈f, t|x|f, t〉 = 〈fe−iωt|x|fe−iωt〉

=

√
h̄

2mω
(fe−iωt + f ∗e+iωt)

= x0 cosωt, (44)

〈f, t|p|f, t〉 = 〈fe−iωt|p|fe−iωt〉

= −i
√
mh̄ω

2
(fe−iωt − f ∗e+iωt)

= −mωx0 sinωt, (45)

where we used f =
√

mω
2h̄
x0. The results agree with those in the Heisenberg

picture Eq. (32,33).
In quantum treatment of electromagnetism, light is described by a collec-

tion of photons. For a coherent light such as laser, the electric and magnetic
field behave exactly like in the classical Maxwell theory. Laser is described
in terms of a coherent state.

3 Coherent State Wave Functions

Coherent state of course can be studied using the conventional wave func-
tions. It takes a few tricks to workt it out, however.

We use the Baker–Campbell–Hausdorff formula. This is a formula im-
portant in the study of Lie algebras and Lie groups. The point is that the
product of two exponentials eXeY can be written in terms of many commu-
tators,

eZ = eXeY (46)

Z = X + Y +
1

2
[X, Y ] +

1

12
([X, [X,Y ]]− [Y, [X, Y ]])

− 1

48
([Y, [X, [X, Y ]]] + [X, [Y, [X,Y ]]]) + · · · (47)

See, for example, http://en.wikipedia.org/wiki/Baker-Campbell-Hausdorff
for more details.

7



We use this formula for efa† . We take

X = f

√
mω

2h̄
x, Y = f

−ip√
2h̄mω

. (48)

For this purpose, we will not need any terms more than two commutators
because [X, [X,Y ]] = [Y, [X, Y ]] = 0 and Eq. (47) simplifies drastically to

eXeY = eX+Y + 1
2
[X,Y ]. (49)

Then we find

efa† = eX+Y = eXeY e−
1
2
[X,Y ] = ef

√
mω
2h̄

xe
f −ip√

2h̄mω ef2/4. (50)

Now we are in position to work out the wave function for the coherent
state.

〈x|f〉 = 〈x|efa†|0〉e−|f |2/2

= 〈x|ef
√

mω
2h̄

xe
f −ip√

2h̄mω ef2/4|0〉e−|f |2/2

= ef
√

mω
2h̄

xe
−f h̄√

2h̄mω

∂
∂x 〈x|0〉ef2/4e−|f |

2/2

= ef
√

mω
2h̄

xe
−f h̄√

2h̄mω

∂
∂x

(
mω

πh̄

)1/4

e−mωx2/2h̄ef2/4e−|f |
2/2

=
(
mω

πh̄

)1/4

exp

f√mω
2h̄

x− mω

2h̄

(
x− f

h̄√
2h̄mω

)2

+
f 2

4
− |f |2

2


=

(
mω

πh̄

)1/4

exp

(
−
(√

mω

2h̄
x− f

)2

+
1

2
(f 2 − |f |2)

)
(51)

The explicit form of the wave function allows us to calculate the shape of
the probability distribution in real time. For the pulled, held, and released
oscilator, the time-dependent wave function is obtained for f =

√
mω
2h̄
x0e

−iωt.

Therefore,

〈x|f, t〉 =
(
mω

πh̄

)1/4

exp
(
−mω

2h̄

(
x− x0e

−iωt
)2

+
1

2

mω

2h̄
x2

0(e
−2iωt − 1)

)
e−iωt/2.

(52)
We then find the probability distribution

|ψ(x, t)|2

=

√
mω

πh̄
exp

(
−mω

h̄
(x2 − 2x0x cosωt+ x2

0 cos 2ωt) +
mω

2h̄
x2

0(cos 2ωt− 1)
)

=

√
mω

πh̄
exp

(
−mω

h̄
(x− x0 cosωt)2

)
. (53)
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Therefore, it is always a Gaussian around x0 cosωt which oscillators around
the origin with the amplitude x0.

4 Coherent State Representation

One important caveat about the coherent states is that they form an over-
complete set of states. It is easy to calculate

〈g|f〉 =
∞∑

n=0

∞∑
m=0

〈n| g
∗n

√
n!

fm

√
m!
|m〉 =

∞∑
n=0

(g∗f)n

n!
= eg∗f . (54)

Even when g 6= f , it does not vanish.
This is not a paradox. When we proved in class that the eigenstates of an

operator with different eigenvalues are orthogonal to each other, we assumed
that the operator was hermitian. The coherent states are eigenstates of the
annihilation operator, which is not hermitian. Therefore, the coherent states
do not form an orthonormal set.

Nonetheless, one can come up with the coherent state representation,
taking the coherent states as the basis kets. This is because of the following
completeness condition,

1 =
∫ d2f

π
|f〉e−f∗f〈f |. (55)

Here, d2f = df1df2 for f = f1 + if2 and f1,2 ∈ R.
Let us prove the completeness relation.

∫ d2f

π
|f〉e−f∗f〈f | =

∑
n,m

∫ d2f

π
e−f∗f fn

√
n!
|n〉〈m| f

∗m
√
m!

=
∑
n,m

∫ |f |d|f |dθ
π

e−f∗f f
n+mei(n−m)θ

√
n!m!

|n〉〈m|

=
∑
n,m

∫ |f |d|f |
π

e−f∗f f
n+m2πδn,m√

n!m!
|n〉〈m|

=
∑
n

∫
2|f |d|f | |f |

2n

n!
e−|f |

2|n〉〈n|

=
∑
n

∫
dt
tn

n!
e−t|n〉〈n|
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=
∑
n

1

n!
Γ(n+ 1)|n〉〈n|

=
∑
n

|n〉〈n| = 1. (56)

In the third last line, we changed the variable to t = |f |2. From the com-
pleteness relation for the energy eigenstates |n〉, the last expression is indeed
the unit operator.

Therefore, any state can be expressed as a linear combination of coherent
states. In particular, the energy eigenstates are

|n〉 =
∫ d2f

π
|f〉e−f∗f〈f |n〉 =

∫ d2f

π
|f〉e−f∗f f

∗n
√
n!
. (57)

The coherent state representation is quite interesting because the two-
dimensional integral on f can be regarded as a phase space integral. Recall
the definition of the annihilation operator Eq. (2) and setting f = a in this
representation, we find

f =

√
mω

2h̄

(
x+

ip

mω

)
. (58)

Therefore, we can identify

d2f

π
=

1

π

√
mω

2h̄
dx

√
mω

2h̄

1

mω
dp =

dx dp

2πh̄
, (59)

indeed the normal phase space volume.
Let us see how one can calculate expectation values of operators using the

coherent states. Note that any operator made up of x and p can be rewritten
in terms of a and a†. Furthermore an operator can be brought to the form
that all annihilation operators are moved to the left, and creation operators
to the right using their commutation relations. Therefore we can cast any
operators to the form O = ana†m without a loss of generality.∗ Then its
expectation value can be calculated as

〈ψ|O|ψ〉 = 〈ψ|ana†m|ψ〉

=
∫ d2f

π
〈ψ|an|f〉e−f∗f〈f |a†m|ψ〉

∗The operators of the form a†man are said to be “normal ordered.” Maybe I should
call those in the order we use here “abnormally ordered.”

10



=
∫ d2f

π
fnf ∗m〈ψ|f〉e−f∗f〈f |ψ〉

=
∫ d2f

π
fnf ∗m|〈f |ψ〉|2e−f∗f . (60)

Therefore, the combination |〈f |ψ〉|2e−f∗f can be viewed as the probability
density on the phase space, where the operator ana†m is simply brought to
the numbers fnf ∗m.

This observation allows us to “view” a state as a probability density on
the phase space. First of all, the classical motion is along a zero-thickness
circle on the phase space. It is always at a point at a given moment, and
the point moves along the circle as time evolves. This is shown as the first
picture in Fig. 1. Note that the time corresponds to the phase, while the
energy to the number.

On the other hand, the quantum mechanical energy eigenstates have the
“phase space density”

|〈f |n〉|2e−f∗f =

∣∣∣∣∣ f ∗n√
n!

∣∣∣∣∣
2

e−f∗f =
|f |2n

n!
e−|f |

2

. (61)

The main support for this distribution is shown in the middle picture of Fig. 1.
It basically forms a ring in the phase space with the constant energy, smeared
a little bit so that the “energy” varies roughly from nh̄ω to (n+ 1)h̄ω. The
area is given by its uncertainty ∆x∆p = (2n+1)h̄/2, while the higher energy
states appear as successively outward rings. The fact that it is spread out
over the entire ring is a reflection of the energy-time uncertainty principle.
Because we have specified energy, we don’t know anything about time, and
we can’t say at what phase it is.

The coherent state is very close to a point on the phase space resembling
the classical mechanics. The “phase space density” for the normalized state
|g〉e−g∗g/2 is

|〈f |g〉e−g∗g/2|2e−f∗f = |e−f∗ge−g∗g/2|2e−f∗f = e−|f−g|2 . (62)

This is a two-dimensional Gaussian centered at f = g, and its main support
is depicted in the right picture of Fig. 1. It has the minimum uncertainty
and its area is much smaller than the energy eigenstate. The patch moves
along the circle clockwise just like the classical oscillator.
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x
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x
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Figure 1: Classical oscillator is a point on the phase space (x, p space) moving
along an elliptic orbit. The quantum mechanical energy eigenstate is spread
out along the ellipse with no notion of motion. The uncertainty ∆x∆p is
larger for higher levels because of a constant width around the oribit. The
coherent state is a patch of the minimum uncertainty, and the whole patch
moves along the classical orbit.
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