HW \#8 (221A), due Nov 3, 4pm

1. Consider the Stern-Gerlach experiment for spin 1. When the atom enters with $J_{z}=+\hbar$ in the magnetic field along the x axis, determine the relative strengths of three lines that correspond to $J_{x}=+\hbar, 0,-\hbar$.
2. The quadrupole moment operators can be arranged into spherical tensors operators

$$
\begin{align*}
Q^{(+2)} & =\sqrt{\frac{3}{8}}(x+i y)^{2} \tag{1}\\
Q^{(+1)} & =-\sqrt{\frac{3}{2}}(x+i y) z \tag{2}\\
Q^{(0)} & =\frac{1}{2}\left(3 z^{2}-r^{2}\right) \tag{3}\\
Q^{(-1)} & =\sqrt{\frac{3}{2}}(x-i y) z \tag{4}\\
Q^{(-2)} & =\sqrt{\frac{3}{8}}(x-i y)^{2} \tag{5}
\end{align*}
$$

Using the form of the wave function $\psi_{l m}=R(r) Y_{l}^{m}(\theta, \phi)$,
(a) Calculate $\left\langle\psi_{3,3}\right| Q^{(0)}\left|\psi_{3,3}\right\rangle$.
(b) Predict all others $\left\langle\psi_{3, m^{\prime}}\right| Q^{(k)}\left|\psi_{3, m}\right\rangle$ using Wigner-Eckart theorem in terms of Clebsch-Gordan coefficients.
(c) Verify them with explicit calcuations for $\left\langle\psi_{3,1}\right| Q^{(1)}\left|\psi_{3,0}\right\rangle,\left\langle\psi_{3,-1}\right| Q^{(-2)}\left|\psi_{3,1}\right\rangle$, and $\left\langle\psi_{3,-2}\right| Q^{(0)}\left|\psi_{3,-3}\right\rangle$.

Note that we leave $\left\langle r^{2}\right\rangle=\int_{0}^{\infty} r^{2} d r R(r)^{2} r^{2}$ as an overall constant that drops out from the ratios.
3. (optional) As it was done in the class, add angular momenta $j_{1}=3 / 2$ and $j_{2}=1$ and work out all Clebsch-Gordan coefficients starting from the state $|j, m\rangle=\left|\frac{5}{2}, \frac{5}{2}\right\rangle=\left|\frac{3}{2}, \frac{3}{2}\right\rangle \otimes|1,1\rangle$.
4. (optional) Answer following questions about the spherical harmonics.
(a) Show that L_{+}annihilates $Y_{2}^{2}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{2 i \phi}$.
(b) Work out all of Y_{2}^{m} using successive applications of L_{-}on Y_{2}^{2}.
(c) Plot the "shapes" of all Y_{2}^{m} as explained in the lecture notes and shown in a sample Mathematica notebook.

