HW #8 (221A), due Nov 3, 4pm

- 1. Consider the Stern–Gerlach experiment for spin 1. When the atom enters with $J_z = +\hbar$ in the magnetic field along the x axis, determine the relative strengths of three lines that correspond to $J_x = +\hbar, 0, -\hbar$.
- 2. The quadrupole moment operators can be arranged into spherical tensors operators

$$Q^{(+2)} = \sqrt{\frac{3}{8}}(x+iy)^2 \tag{1}$$

$$Q^{(+1)} = -\sqrt{\frac{3}{2}(x+iy)z}$$
(2)

$$Q^{(0)} = \frac{1}{2}(3z^2 - r^2) \tag{3}$$

$$Q^{(-1)} = \sqrt{\frac{3}{2}(x - iy)z}$$
(4)

$$Q^{(-2)} = \sqrt{\frac{3}{8}}(x - iy)^2 \tag{5}$$

Using the form of the wave function $\psi_{lm} = R(r)Y_l^m(\theta, \phi)$,

- (a) Calculate $\langle \psi_{3,3} | Q^{(0)} | \psi_{3,3} \rangle$.
- (b) Predict all others $\langle \psi_{3,m'} | Q^{(k)} | \psi_{3,m} \rangle$ using Wigner–Eckart theorem in terms of Clebsch–Gordan coefficients.
- (c) Verify them with explicit calcuations for $\langle \psi_{3,1} | Q^{(1)} | \psi_{3,0} \rangle$, $\langle \psi_{3,-1} | Q^{(-2)} | \psi_{3,1} \rangle$, and $\langle \psi_{3,-2} | Q^{(0)} | \psi_{3,-3} \rangle$.

Note that we leave $\langle r^2 \rangle = \int_0^\infty r^2 dr R(r)^2 r^2$ as an overall constant that drops out from the ratios.

- 3. (optional) As it was done in the class, add angular momenta $j_1 = 3/2$ and $j_2 = 1$ and work out all Clebsch–Gordan coefficients starting from the state $|j,m\rangle = |\frac{5}{2}, \frac{5}{2}\rangle = |\frac{3}{2}, \frac{3}{2}\rangle \otimes |1,1\rangle$.
- 4. (optional) Answer following questions about the spherical harmonics.

(a) Show that L_+ annihilates $Y_2^2 = \sqrt{\frac{15}{32\pi}} \sin^2 \theta e^{2i\phi}$.

- (b) Work out all of Y_2^m using successive applications of L_- on Y_2^2 .
- (c) Plot the "shapes" of all Y_2^m as explained in the lecture notes and shown in a sample Mathematica notebook.