
HW #10 (221A), due Nov 17, 4pm

1. Any Hamiltonian can be recast to the form

H = U


E1 0 · · · 0
0 E2 · · · 0
...

...
. . .

...
0 0 · · · En

U † (1)

where U is a general n-by-n unitarity matrix.

(a) Show that the time evolution operator is given by

e−iHt/~ = U


e−iE1t/~ 0 · · · 0

0 e−iE2t/~ · · · 0
...

...
. . .

...
0 0 · · · e−iEnt/~

U †. (2)

(b) For a two-state problem, the most general unitarity matrix is

U = eiθ

(
cos θeiφ − sin θeiη

sin θe−iη cos θe−iφ

)
. (3)

Work out the probabilities P (1 → 2) and P (2 → 1) over time
interval t, and verify that they are the same despite the appar-
ent T -violation due to complex phases. (NB: This is the same
problem as the neutrino oscillation in the midterm if you set

Ei =
√
~p2c2 +m2

i c
4 ≈ |~p|c+

m2
i c3

2|~p| and set all phases to zero.)

(c) For a three-state problem, however, the time-reversal invariance
can be broken. Calculate the difference P (1 → 2)− P (2 → 1) for
the following form of the unitary matrix

U =

 1 0 0
0 c23 s23

0 −s23 c23

  c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

  c12 s12 0
−s12 c12 0

0 0 1


(4)

where other five unimportant phases are already dropped. The
notation is s12 = sin θ12, c23 = cos θ23, etc.



(d) (optional) For CP-conjugate states (e.g.., anti-neutrinos vs neu-
trinos), the Hamiltonian is given by substituting U∗ in place of
U . Show that the probabilities P (1 → 2) and P (1̄ → 2̄) can differ
(CP violation) yet CPT is respected, i.e., P (1 → 2) = P (2̄ → 1̄).

2. Consider a periodic replusive potential of the form

V =
∞∑

n=−∞

λδ(x− na) (5)

with λ > 0. The general solution for −a < x < 0 is given by

ψ(x) = Aeiκx +Be−iκx, (6)

with κ =
√

2mE/~. Using the Bloch’s theorem, wave function for the
next period 0 < x < a is given by

ψ(x) = eika(Aeiκ(x−a) +Be−iκ(x−a)) (7)

for |k| ≤ π/a. Answer the following questions.

(a) Write down the continuity condition for the wave function and
the required gap for its derivative at x = 0 (see the notes on
the second page). Show that the phase eika under the discrete
translation x→ x+ a is given by κ as

eika = cosκa+
1

κd
sinκa± i

√
1−

(
cosκa+

1

κd
sinκa

)2

. (8)

Here and below, d ≡ ~2/mλ.

(b) Take the limit of zero potential d → ∞ and show that there are
no gaps between bands as expected for a free particle.

(c) When the potential is weak but finite (large d), show analytically
that there appear gaps between bands at k = ±π/a.

(d) Plot the relationship between κ and k for a weak potential (d = 3a)
and a strong potential (d = 1

3
a) (both solutions together).

(e) You always find two values of k at the same energy (or κ). What
discrete symmetry guarantees this degeneracy?



How to deal with a delta-function potential

Suppose you have a Hamiltonian H = p2

2m
+ λδ(x). The time-dependent

Schrödinger equation is

− ~2

2m
ψ′′(x) + λδ(x)ψ(x) = Eψ(x). (9)

Let us integrate both sides of the equation for a small interval x ∈ [−ε, ε],
and we will send ε→ 0 in the end. For the right-hand side of the equation,∫ ε

−ε

dxEψ(x) → 0. (10)

The left-hand side of the equation is more complicated. The first term is∫ ε

−ε

dx
−~2

2m
ψ′′(x) =

[
− ~2

2m
ψ′(x)

]ε

−ε

= − ~2

2m
(ψ′(+ε)− ψ′(−ε)). (11)

On the other hand, the second term is∫ ε

−ε

dxλδ(x)ψ(x) = λψ(0). (12)

Putting everything together,

− ~2

2m
(ψ′(+ε)− ψ′(−ε)) + λψ(0) = 0, (13)

or

ψ′(+ε)− ψ′(−ε) =
2mλ

~2
ψ(0). (14)

Therefore, the wave function must be continuous across the delta function,
while the derivative is discontinuous.

You can work on problem 22, Chapter 2 of Sakurai, and find that there
is one bound state with a negative delta function potential, and a continuum
of positive energy eigenstates.


