HW \#10 (221A), due Nov 17, 4pm

1. Any Hamiltonian can be recast to the form

$$
H=U\left(\begin{array}{cccc}
E_{1} & 0 & \cdots & 0 \tag{1}\\
0 & E_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & E_{n}
\end{array}\right) U^{\dagger}
$$

where U is a general n-by- n unitarity matrix.
(a) Show that the time evolution operator is given by

$$
e^{-i H t / \hbar}=U\left(\begin{array}{cccc}
e^{-i E_{1} t / \hbar} & 0 & \cdots & 0 \tag{2}\\
0 & e^{-i E_{2} t / \hbar} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & e^{-i E_{n} t / \hbar}
\end{array}\right) U^{\dagger} .
$$

(b) For a two-state problem, the most general unitarity matrix is

$$
U=e^{i \theta}\left(\begin{array}{cc}
\cos \theta e^{i \phi} & -\sin \theta e^{i \eta} \tag{3}\\
\sin \theta e^{-i \eta} & \cos \theta e^{-i \phi}
\end{array}\right) .
$$

Work out the probabilities $P(1 \rightarrow 2)$ and $P(2 \rightarrow 1)$ over time interval t, and verify that they are the same despite the apparent T-violation due to complex phases. (NB: This is the same problem as the neutrino oscillation in the midterm if you set $E_{i}=\sqrt{\vec{p}^{2} c^{2}+m_{i}^{2} c^{4}} \approx|\vec{p}| c+\frac{m_{i}^{2} c^{3}}{2|\vec{p}|}$ and set all phases to zero.)
(c) For a three-state problem, however, the time-reversal invariance can be broken. Calculate the difference $P(1 \rightarrow 2)-P(2 \rightarrow 1)$ for the following form of the unitary matrix

$$
U=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{4}\\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

where other five unimportant phases are already dropped. The notation is $s_{12}=\sin \theta_{12}, c_{23}=\cos \theta_{23}$, etc.
(d) (optional) For CP-conjugate states (e.g.., anti-neutrinos vs neutrinos), the Hamiltonian is given by substituting U^{*} in place of U. Show that the probabilities $P(1 \rightarrow 2)$ and $P(\overline{1} \rightarrow \overline{2})$ can differ (CP violation) yet CPT is respected, i.e., $P(1 \rightarrow 2)=P(\overline{2} \rightarrow \overline{1})$.
2. Consider a periodic replusive potential of the form

$$
\begin{equation*}
V=\sum_{n=-\infty}^{\infty} \lambda \delta(x-n a) \tag{5}
\end{equation*}
$$

with $\lambda>0$. The general solution for $-a<x<0$ is given by

$$
\begin{equation*}
\psi(x)=A e^{i \kappa x}+B e^{-i \kappa x} \tag{6}
\end{equation*}
$$

with $\kappa=\sqrt{2 m E} / \hbar$. Using the Bloch's theorem, wave function for the next period $0<x<a$ is given by

$$
\begin{equation*}
\psi(x)=e^{i k a}\left(A e^{i \kappa(x-a)}+B e^{-i \kappa(x-a)}\right) \tag{7}
\end{equation*}
$$

for $|k| \leq \pi / a$. Answer the following questions.
(a) Write down the continuity condition for the wave function and the required gap for its derivative at $x=0$ (see the notes on the second page). Show that the phase $e^{i k a}$ under the discrete translation $x \rightarrow x+a$ is given by κ as

$$
\begin{equation*}
e^{i k a}=\cos \kappa a+\frac{1}{\kappa d} \sin \kappa a \pm i \sqrt{1-\left(\cos \kappa a+\frac{1}{\kappa d} \sin \kappa a\right)^{2}} . \tag{8}
\end{equation*}
$$

Here and below, $d \equiv \hbar^{2} / m \lambda$.
(b) Take the limit of zero potential $d \rightarrow \infty$ and show that there are no gaps between bands as expected for a free particle.
(c) When the potential is weak but finite (large d), show analytically that there appear gaps between bands at $k= \pm \pi / a$.
(d) Plot the relationship between κ and k for a weak potential $(d=3 a)$ and a strong potential $\left(d=\frac{1}{3} a\right)$ (both solutions together).
(e) You always find two values of k at the same energy (or κ). What discrete symmetry guarantees this degeneracy?

How to deal with a delta-function potential

Suppose you have a Hamiltonian $H=\frac{p^{2}}{2 m}+\lambda \delta(x)$. The time-dependent Schrödinger equation is

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}(x)+\lambda \delta(x) \psi(x)=E \psi(x) \tag{9}
\end{equation*}
$$

Let us integrate both sides of the equation for a small interval $x \in[-\epsilon, \epsilon]$, and we will send $\epsilon \rightarrow 0$ in the end. For the right-hand side of the equation,

$$
\begin{equation*}
\int_{-\epsilon}^{\epsilon} d x E \psi(x) \rightarrow 0 \tag{10}
\end{equation*}
$$

The left-hand side of the equation is more complicated. The first term is

$$
\begin{equation*}
\int_{-\epsilon}^{\epsilon} d x \frac{-\hbar^{2}}{2 m} \psi^{\prime \prime}(x)=\left[-\frac{\hbar^{2}}{2 m} \psi^{\prime}(x)\right]_{-\epsilon}^{\epsilon}=-\frac{\hbar^{2}}{2 m}\left(\psi^{\prime}(+\epsilon)-\psi^{\prime}(-\epsilon)\right) . \tag{11}
\end{equation*}
$$

On the other hand, the second term is

$$
\begin{equation*}
\int_{-\epsilon}^{\epsilon} d x \lambda \delta(x) \psi(x)=\lambda \psi(0) \tag{12}
\end{equation*}
$$

Putting everything together,

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m}\left(\psi^{\prime}(+\epsilon)-\psi^{\prime}(-\epsilon)\right)+\lambda \psi(0)=0 \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
\psi^{\prime}(+\epsilon)-\psi^{\prime}(-\epsilon)=\frac{2 m \lambda}{\hbar^{2}} \psi(0) \tag{14}
\end{equation*}
$$

Therefore, the wave function must be continuous across the delta function, while the derivative is discontinuous.

You can work on problem 22, Chapter 2 of Sakurai, and find that there is one bound state with a negative delta function potential, and a continuum of positive energy eigenstates.

