Physics 221B: Solution to HW #10

1) The Electromagnetic Field and its Hamiltonian

a)
This is a standard computation which can be found in most books on quantum field theory, though perhaps in the context of the scalar Klein-Gordon field.

\[H = \frac{1}{8\pi} \int d\vec{x} \vec{E}^2 + \vec{B}^2. \]

Using \(\vec{E} = -\frac{1}{c} \frac{\partial \vec{A}}{\partial t} \) and plugging in the mode expansion for \(\vec{A} \), the \(\vec{E}^2 \) contribution to the energy is

\[\int d\vec{x} \vec{E}^2 = \int d\vec{x} \frac{2\pi\hbar c^2}{L^3} \sum_{\vec{p},\vec{q},\lambda,\lambda'} (-i)^2 \sqrt{\omega_{\vec{p}}\omega_{\vec{q}}} (\epsilon^\dagger_\lambda(\vec{p})a_\lambda(\vec{p})e^{i\vec{q} \cdot \vec{x}/\hbar} - \epsilon^\dagger_\lambda(\vec{p})^*a_{\lambda'}(\vec{p})^*e^{-i\vec{q} \cdot \vec{x}/\hbar}) \\ \quad \times (\epsilon^\dagger_{\lambda'}(\vec{q})a_{\lambda'}(\vec{q})e^{i\vec{q} \cdot \vec{x}/\hbar} - \epsilon^\dagger_{\lambda'}(\vec{q})^*a^\dagger_{\lambda'}(\vec{q})^*e^{-i\vec{q} \cdot \vec{x}/\hbar}). \]

After multiplying out, rewrite

\[\int d\vec{x} e^{i(\vec{p} \cdot \vec{x} - \vec{q} \cdot \vec{x})/\hbar} \to (2\pi\hbar)^3 \delta^3(\vec{p} \pm \vec{q}) \]

\[\sum_{\vec{q}} \to \frac{L^3}{(2\pi\hbar)^3} \int d\vec{q}. \]

Then since \(\omega_{-\vec{p}} = \omega_{\vec{p}} \), after carrying out the obvious integrals we have

\[\int d\vec{x} \vec{E}^2 = -\sum_{\vec{p}} 2\pi\hbar \omega_{\vec{p}} \sum_{\lambda,\lambda'} (\epsilon^\dagger_\lambda(\vec{p})a_\lambda(\vec{p})\epsilon^\dagger_{\lambda'}(-\vec{p})a_{\lambda'}(-\vec{p}) - \epsilon^\dagger_\lambda(\vec{p})^*a_{\lambda'}^\dagger(\vec{p})\epsilon^\dagger_{\lambda'}(-\vec{p})a_{\lambda'}(\vec{p}) \]

\[- \epsilon^\dagger_\lambda(\vec{p})a_\lambda(\vec{p})\epsilon^\dagger_{\lambda'}(-\vec{p})a_{\lambda'}(-\vec{p}) + \epsilon^\dagger_{\lambda'}(\vec{p})a_{\lambda'}(\vec{p})\epsilon^\dagger_{\lambda'}(\vec{p})^*a_{\lambda'}^\dagger(-\vec{p}). \]

Now

\[\epsilon^\dagger_\lambda(\vec{p})\epsilon^\dagger_{\lambda'}(-\vec{p}) = -\delta_{\lambda,\lambda'} \]

\[\epsilon^\dagger_{\lambda'}(-\vec{p})\epsilon^\dagger_{\lambda}(\vec{p}) = \delta_{\lambda,\lambda'}, \]

with analogous results for the other combinations (check simple cases). Then

\[\int d\vec{x} \vec{E}^2 = \sum_{\vec{p},\lambda} 2\pi\hbar \omega_{\vec{p}} (a_\lambda(\vec{p})a_{\lambda}(-\vec{p}) + a_{\lambda'}(\vec{p})a_{\lambda'}(-\vec{p})) + a_{\lambda'}^\dagger(\vec{p})a^\dagger_{\lambda'}(-\vec{p}). \]

1I thank Ed Boyda once more.
The terms like aa and $a\dagger a\dagger$ cancel with similar terms from \vec{B}^2 while the other terms add. Including the $1/8\pi$ from the definition of energy,

$$H = \frac{1}{8\pi} \int d\vec{x} \vec{E}^2 + \vec{B}^2 = \frac{1}{2} \sum_{\vec{p},\lambda} \hbar \omega_\vec{p} (a_\lambda^\dagger(\vec{p})a_\lambda(\vec{p}) + a_\lambda(\vec{p})a_\lambda^\dagger(\vec{p})).$$

Using $[a, a\dagger] = 1$ gives the result

$$H = \sum_{\vec{p},\lambda} \hbar \omega_\vec{p} (a_\lambda^\dagger(\vec{p})a_\lambda(\vec{p}) + \frac{1}{2}).$$

b)

We consider the coherent state of photons with $\vec{p} = (0, 0, p)$ and helicity $\lambda = +$.

$$|f, t\rangle := e^{-\frac{f^* f}{2}} e^{e^{-ic|\vec{p}|^t/h} a_\lambda^\dagger(\vec{p}) |0\rangle},$$

$$i\hbar \frac{\partial}{\partial t} |f, t\rangle = c |\vec{p}| f e^{-ic|\vec{p}|^t/h} a_\lambda^\dagger(\vec{p}) |f, t\rangle.$$

Since $|f, t\rangle$ is an eigenstate of the annihilation operator, $a_\lambda(\vec{q}) |f, t\rangle = \delta_{\lambda+} \delta_{\vec{p}\vec{q}} f e^{-ic|\vec{p}|^t/h} |f, t\rangle$,

$$H |f, t\rangle = \sum_{\vec{q},\lambda} c |\vec{q}| a_\lambda^\dagger(\vec{q})a_\lambda(\vec{q}) |f, t\rangle = c |\vec{p}| a_\lambda^\dagger(\vec{p}) f e^{-ic|\vec{p}|^t/h} |f, t\rangle,$$

ignoring the zero point energy and using the delta functions to perform the sums. Clearly $i\hbar \frac{\partial}{\partial t} |f, t\rangle = H |f, t\rangle$.

c)

Again, $|f, t\rangle$ is an eigenstate of the annihilation operator and $\langle f, t |$ is an eigenstate of the creation operator so that

$$\langle f, t | a_\lambda(\vec{q}) |f, t\rangle = \delta_{\lambda+} \delta_{\vec{p}\vec{q}} f e^{-ic|\vec{p}|^t/h},$$

$$\langle f, t | a_\lambda^\dagger(\vec{q}) |f, t\rangle = \delta_{\lambda+} \delta_{\vec{p}\vec{q}} f^* e^{ic|\vec{p}|^t/h}.$$

The definition of \vec{A} gives immediately

$$\langle f, t | \vec{A} |f, t\rangle = \sqrt{\frac{2\pi\hbar c^2}{L^3}} \frac{1}{\sqrt{\omega_\vec{p}}}(\vec{\varepsilon}_+(\vec{p}) f e^{-ip\cdot x/h} + \vec{\varepsilon}_+(\vec{p}) f^* e^{ip\cdot x/h}),$$

where $p \cdot x = c |\vec{p}| t - \vec{p} \cdot \vec{x}$ is the Minkowski scalar product. The coherent state expectation value reproduces a classical plane wave.
3)

a)
Work in units where \(\hbar = 1 \). It is convenient to rewrite the Hamiltonian as

\[
H = -J \sum_{\langle ij \rangle} \vec{s}_1 \cdot \vec{s}_2 = -J \sum_{\langle ij \rangle} s_{zi}s_{zj} + \frac{1}{2} (s_{+i}s_{-j} + s_{-i}s_{+j})
\]

where \(s_{\pm} = s_x \pm is_y \). When all spins are up along the \(z \) axis only the first term in \(H \) contributes because the other two terms will “try to raise” spins that are already up. Therefore, defining \(|0\rangle \equiv |\uparrow\uparrow\uparrow\uparrow \ldots \rangle \)

\[
H |0\rangle = -J \sum_{\langle i,j \rangle} s_{zi}s_{zj} |0\rangle = -J \sum_{\langle i,j \rangle} \frac{1}{4} |0\rangle = -\frac{NJ}{4} |0\rangle
\]

where \(N \) the number of pairs.

b)
The system is rotationally invariant, so the Hamiltonian should commute with the rotation operator. We can check this for the particular rotation \(\tilde{U} = \Pi_i U(\theta) = e^{-i\theta \sum_i s_{yi}} : \)

\[
[s_{yi} + s_{yj}, \vec{s}_i \cdot \vec{s}_j] = [s_{yi} + s_{yj}, s_{xi}s_{xj} + s_{yi}s_{yj} + s_{zi}s_{zj}]
\]

\[
= -is_{zi}s_{xj} - is_{xi}s_{zj} + is_{xi}s_{zj} + is_{zi}s_{xj} = 0.
\]

Commuting operators have commuting exponentials, so \(H\tilde{U} = \tilde{U}H \); the Hamiltonian is invariant under the rotation. This means that the new ground state \(|0\rangle := \tilde{U}|0\rangle \) satisfies

\[
H\tilde{U}|0\rangle = \tilde{U}H|0\rangle = E_0\tilde{U}|0\rangle,
\]

so the rotated state is also a ground state, an equivalent “choice” for the spontaneous symmetry breaking.

We want to check that the two ground states are orthogonal in the limit \(N \to \infty \) where \(N \) is the number of spins. Consider a given spin which in the ground state is in the state \(|\uparrow\rangle = |0\rangle \). The rotation sends this to

\[
|\uparrow\rangle = \left(\begin{array}{c} \cos \frac{\theta}{2} - \sin \frac{\theta}{2} \\ \sin \frac{\theta}{2} + \cos \frac{\theta}{2} \end{array} \right) \left(\begin{array}{c} 1 \\ 0 \end{array} \right) = \cos \frac{\theta}{2} |\uparrow\rangle + \sin \frac{\theta}{2} |\downarrow\rangle.
\]
Taking the inner product $(0|0')$ will give a product of factors $(↑ | ↑')$, one for each spin. The factors are
\[
\langle ↑ | ↑' \rangle = \langle ↑ | (\cos \frac{\theta}{2} ↑) + \sin \frac{\theta}{2} ↓ \rangle = \cos \frac{\theta}{2}.
\]
For N spins,
\[
\langle 0|0' \rangle = (\cos \frac{\theta}{2})^N.
\]
For any non-zero rotation, the factor $\cos \frac{\theta}{2}$ will be less than one. Thus as $N \to \infty$, $(\cos \frac{\theta}{2})^N \to 0$.

c)
Now we consider the state
\[
|\psi\rangle = \sum_n e^{ika} |↑↑↑↓n↑↑...⟩.
\]
This time when we act H on $|\psi\rangle$ the last two terms in H may contribute. Defining $|\psi_n\rangle \equiv |↑↑↓n↑...⟩$ we see how H acts
\[
H|\psi_n\rangle = -J \frac{N-4}{4} |\psi_n\rangle - \frac{J}{2} (|\psi_{n-1}\rangle + |\psi_{n+1}\rangle).
\]
The first term above is just the ground state energy form part (a), but after two pairs have changed from $s_z i s_z j = +1$ to $s_z i s_z j = -1$. The rest comes from the $s_+ s_-$ terms "moving" the spin that points down by one site to the left or to the right.

Now, for $|\psi\rangle = \sum_n e^{ika} |\psi_n\rangle$ we get
\[
H|\psi\rangle = -J \sum_n e^{ika} \frac{(N-4)}{4} |\psi_n\rangle - \frac{J}{2} \sum_n e^{i(n+1)ka} |\psi_n\rangle - \frac{J}{2} \sum_n e^{i(n-1)ka} |\psi_n\rangle
\]
\[
= -J \left(\frac{N-4}{4} - \frac{1}{2} e^{ika} - \frac{1}{2} e^{-ika} \right) \sum_n e^{ina} |\psi_n\rangle = -J \left(\frac{N}{4} + 1 - \cos ka \right) |\psi\rangle.
\]
The excitation energy is obviously
\[
\Delta E = J(1 - \cos ka).
\]
This is a tiny excitation for $N \gg 1$, as we expect.