221B Lecture Notes
Scattering Theory II

1 Born Approximation
Lippmann—Schwinger equation
1

W) = o) + m‘/W), (1)

is an exact equation for the scattering problem, but it still is an equation to
be solved because the state vector |1)) appears on both sides of the equation.
In the coordinate space, as we derived in Scattering Theory I, it becomes
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far away from the scatterer where r = |Z| and k' = k— is the wave-vector
r

of the scattered wave. Note that \lg’] = k. It is an integral equation for the
unknown function ().

One way to solve the Lippmann—Schwinger equation Eq. is by pertur-
bation theory, i.e., a power series expansion in the potential V. Note that, in
the absence of the potential, |¢)) = |¢), or in other words, |¢)) = |¢) + O(V).
Therefore the lowest (1st) order approximation in V' is write
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and neglect O(V?) correction. This is called Born appfmximationﬂ or more
correctly, 1st Born approximation. Obviously, this approximation is good
only when the scattering is weak.

In the coordinate space, we again replace ¥ by ¢ in the r.h.s. of Eq. ,
and find
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IDid you know that Max Born is the grandfather of Olivia Newton-John? See, e.g.,
http://mooni.fccj.org/ ethall/trivia/trivia.htm
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where ¢ = k — K is the momentum transfer in the scattering process.
The expression Eq. is very interesting. It shows that the scattering
amplitude is the Fourier transform of the potential,
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up to a numerical factor of —(1/4m)(2m/h?). The superscript shows that
this is a result valid at the first order in V. This expression demonstrates the
uncertainty principle: to probe small-scale structure of an object, you need
to have a scattering experiment with a high momentum transfer, because the
Fourier transform averages out small-scale structure otherwise.

If the potential is central, i.e., V(&) is a function of r = |Z| only. Then
the expression Eq. can be further simplified:
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Therefore the scattering amplitude depends only on ¢ = |7] = |k — ¥/|
2k sin(#/2). In other words, it is a function of the polar angle § only f(k’, k) =
f(0). This is a statement independent of Born approximation.

2 Rutherford Scattering

2.1 Point Coulomb Source

One of the most important application of the Born approximation is to the
Coulomb potential, because this is the relevant one for the Rutherford scat-
tering experiment. By taking
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where I took the unit where 4weqg = 1, we would like to calculate the differ-
ential cross section. Z is the charge of the scatterer (say, gold nucleus) and
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Z' that of the incident particle (say, « particle). However, the expression
Eq. (@ does not converge. Therefore, we start with a short-range potential
called Yukawa potential
e hr
V(r) =Vo——, (8)

and take the limit © — 0 to recover the Coulomb potential at the end of the
calculationsﬂ The Yukawa potential is a typical example of a short-ranged
potential because it goes rapidly to zero once r Z 1/u. It is of great interest
on its own apart from the limit 4 — 0. The potential that binds protons
and nucleons (nuclear force, or strong interaction) can be approximated by
this type of potential, because the range of the nuclear force is only about
107! cm at most.

The formula Eq. @ tells us that the scattering amplitude for the Yukawa
potential Eq. (8] is
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Different cross section is therefore given by

(9)
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The total cross section is obtained by integrating over df) = d cos 8d¢,
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We can now take the limit y — 0 and Vj = ZZ’e? to obtain results for
the Coulomb potential,

do  [(2mZZ'e?\’ 1 (2m)%(Z Z'e?)?
( ) & 1)
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On the other hand, the total cross section Eq. diverges! The divergence
is in the cos # integral when 6 — 0. In other words, the divergence occurs for
the small momentum transfer ¢ — 0, which corresponds to large distances.
This result for the Coulomb scattering is exactly the same as in the clas-
sical theory by identifying hk as the momentum of the incident particle. It

2My normalization of Vj is different from J.J. Sakurai by a factor of y, so that p — 0
limit is taken more easily.



is surprising that the Born approximation actually gives an exact result for
the Coulomb potential, and it agrees with the classical calculation as well.
This should be considered as a coincidence because there is no reason why
any of them should come out to be the same.

The reason why the total cross section diverges is because the Coulomb
potential is actually a long-range force. No matter how far the incident
particles are from the charge, there is always an effect on the motion of the
particles and they get scattered.

2.2 Form Factor

In practice, however, the total cross section cannot be infinite because the
Coulomb potential by the gold nucleus is screened by the surrounding elec-
trons in the gold atoms. What would be the cross section in that case? The
Coulomb potential then is modified at long distances (distance beyond Bohr

radius) where
Y 2 L 7 2 .
V() =225 - / A2 p(ah), (13)

7] 7

where p(:g’ ) is the probability density of the electron cloud with the normal-
ization [da'p(x’) = Z. p(a') is concentrated within the size of the atom
|m_7 | S a. Very far away from the atom, the second term cancels the first term
and there is no potential.

Note that the second term is basically a convolution of the Coulomb po-
tential and the probability density. Since the first Born amplitude is nothing
but the Fourier transform of the potential, the convolution becomes a prod-
uct of Fourier transforms, one for the Coulomb potential and the other for
the probability density. Indeed, after performing the integral in Eq. @, we

find ZZ’ )
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In the limit ¢ — 0, where the cross section diverges, two terms in the square
bracket cancel because the second term approaches unity.

To gain more insight, let us take a simple case of the hydrogen atom
Z = 1. The electron wave function in the ground state is

(7)) = 203"/, (15)
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a = h?/me? is the Bohr radius. The probability density of the electron cloud
is then |
2\ — =\ |2 - —27”/0,‘ 16
o(F) = [0() = e (16)
All we need to know now is the Fourier transform of this probability density.
It is straightforward to obtain
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For ¢ — 0, the Lh.s. is simply the normalization of the wave function, i.e.,
unity. The r.h.s. indeed gives the same limit. On the other hand, it vanishes
when ¢ > a~!. In other words, for momentum transfer larger than the
inverse size of the atom h/a, the electron cloud does not change the cross

section from the case of a point Coulomb source.
Eq. is now given by
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When ¢ — 0, the amplitude is regular and the total cross section converges.
Recalling ¢? = 2k*(1 — cos 6), we find

2m 2 — (K%a®) + 2 (1 + k%a?) log(1 + k%a®)
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For small k < a™!, the last factor becomes unity, and the total cross section
is

2 2 2
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However, this result cannot be true. The geometric cross section of the
target (the atom) is only of the order of ma?. Because m > m,, this total
cross section is far larger than the geometric cross section. It signals the
breakdown of perturbation theory: the Born approximation is invalid. Using
the discussion of the validity in the next section, one can also see explicitly
why that is the case. On the other hand, for a high momentum k& > a™ !,
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As long as k > a~'(m/m.), Born approximation is valid and the total cross
section can be trusted.

At much higher momentum transfers, the a-particle even starts to resolve
the charge distribution of the nucleus

—»Z’Q _’212
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where py(2') is the charge distribution of the nucleus. Because at such high
momentum transfer the second term is suppressed as seen above, the only
important piece is the first term. Therefore the differential cross section
reduces to the form

do  do

9 40 |F(q)]?, (23)

pointlike

where the form factor F'(q) is nothing but the Fourier transform

Fla) = [ dion(@)e7 (24)

In fact, Rutherford experiment already showed the deviation from the point-
like Coulomb source at high momentum transfer (large angle scattering),
which led him to estimate the size of the nucleus.

Fig. [1] shows the form factor |F(q)|* in an electron-nucleus scattering
experiment. The oscillatory behavior can be understood qualitatively in the
following way. Imagine a sphere of radius a with a uniform charge density p
such that Z = 47 a3p0 The form factor, the Fourier transform, is given by

Flg) = / dZpy (7)eid® (25)
2
= / dqb/ dcosQ/ r2drpoe’dr «sf (26)
iqr __ ,—iqr
= 271'/ TZdTpOL (27)
0 iqr
_ 47Tsin aq — qu cos aqu' (28)
q

Overall, this function goes down as 1/¢* at large ¢, while it oscillates in the
numerator. It oscillates because the Fourier transform depends sensitively on
how many waves fit inside the nucleus. The true charge density distribution
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is not sharply cutoff as a uniform sphere, but somewhat smoothed out at
the edge, but still similar. Fourier transform of the measured form factor
determined the true charge density distribution inside the nucleus, as seen
in Fig.

Later, much more precise and higher energy electron-proton scattering
experiments were performed, which showed that the form factor has an ap-
proximate dipole form (Fig.

1
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where an =~ 0.26 fm. From the inverse Fourier transform, one can see that
the charge density of the proton has approximately an exponential profile
o e~"/%¥_ This is probably one of the earliest evidences for the composite
nature of the proton.

(29)

3 Born Expansion

Of course, the first Born approximation is only the leading order in V. We
can work out higher orders from Eq. , by iteratively insert the r.h.s. of the
equation at a given order in V' back into the |1)). We then have the infinite
series

1 | 1
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This is called Born expansion, and the Born approximation we used is nothing
but the first term in this systematic expansion. The physical meaning of this
equation is obvious. The first term is the wave which did not get scattered.
The second term is the wave that gets scattered at a point in the potential
and then propagates outwards by the 1/(E — Hy + i€) operator. In the
third term, the wave gets scattered at a point in the potential, propagates
for a while, and gets scattered again at another point in the potential, and
propagates outwards. In the n + 1-th term, there are n times scattering of
the wave before it propagates outwards.

More formally, an operator called T-matrix is used often in scattering
problems. The definition is

Vig) =T|9). (31)
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Fig. 6.5. Differential cross section for scattering of 750-MeV electrons from calcium
isotopes. The cross section for 49Ca has been multiplied by a factor of 10, and that
for 48Ca by 10-1. {From J. B. Bellicard et al., Phys. Rev. Letters 19, 527 (1967).]

Figure 1: Taken from Subatomic Physics, Hans Frauenfelder and Ernest M.
Henley, Prentice-Hall, Inc., 1974.
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Fig. 6.7. Probability distribution for 40Ca and 208Pb, obtained by electron scattering.
(Courtesy of D. G. Ravenhall.)

Figure 2: Taken from Subatomic Physics, Hans Frauenfelder and Ernest M.
Henley, Prentice-Hall, Inc., 1974.
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Fig. 6.13. Values of the proton magnetic form factor Gaz, normalized by division
with the proton magnetic moment, plotted versus the momentum transfer gt An
empirical dipole fit to the data is shown as a solid line. The insert shows the ratio of the
measured values of Gas to the dipole fit. From P. N. Kirk et al., Phys. Rev. D8, 63
(1973).

Figure 3: Taken from Subatomic Physics, Hans Frauenfelder and Ernest M.
Henley, Prentice-Hall, Inc., 1974.
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We always take |¢) = |hk). This seemingly weird definition is actually useful
as seen below. The scattering amplitude derived in the lecture note “Scat-
tering Theory I” is

(27)3 2m
Ar B2

F(E k) = — (WK’ |V |0). (32)

Using the definition of the T-matrix, we find

FR) = — <32f“¥”<hquwhk> (33)

Hence, the T-matrix element has a physical interpretation of the transition
(hence T)) from the initial momentum %k to the ﬁnal momentum 7ik’.

Using the Lippmann—Schwinger equation Eq. ( , and multiplying the
both sides by V' from left, we find

1
T|¢) =V]e) + Vmﬂ@a (34)
and hence .
T=V+ me (35)
In other words, a formal solution to the T-matrix is
r—— 1 v (36)
1 = Ve
By Taylor expanding this operator in geometric series, we find
T:V—i—V—1 V+V ! —V = —V 4. (37)
E — Hy+ e E—Hy+1w FE— Hy+ie

This proves the Born expansion Eq. .
In the coordinate space, for example, the second Born term is given by

1 1

v V 1%
oy sl ey el
—9 zk\f—:r?l L =92 ik|a;’—oc7’| N o
/dx’d:c” 2m ¢ =V (z') 2m < =——=-V(2")p(x"), (38)
Ar|T — | e Ar|a’ — 2|

where ¢(z) = e /(2h)3/2.
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4 Validity of Born Approximation

Born approximation replaces ¢ by ¢ in Lippmann—Schwinger equation, which
is integrated together with the potential. Therefore, in order for Born ap-
proximation to be good, the difference between ¢ and ¢ must be small where
the potential exists. The self-consistency requires that

[¥(T) = o(2)] < |o(7)] (39)

where V' (Z) is sizable, and the Lh.s. can be evaluated within Born approx-
imation itself. From Lippmann—Schwinger equation (the one before taking
the limit of large r), we find

9 L piklE—a'| o
il / A5 V(@) | <« 1. (40)

In particular, we require this condition at & = 0 where the potential is the
strongest presumably.

You discussed delta-function potential V' = ~4(Z) in the homework prob-
lem and showed that it actually does not cause any scattering in three di-
mensions. The Born approximation Eq. , however, suggests a scattering

amplitude
1 2m

"
This is in contradiction to the exact result. In this case, the validity condition

Eq. is indeed violated because

FOW k) = (41)
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can be arbitrarily large when |Z| — 0. In fact, the second Born amplitude
diverges non matter how small v is. Inserting V = ~4(Z), Eq. is
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Clearly, Born expansion is not appropriate for this potential, and hence your
result from the HW #1 is not inconsistent with an apparent finite scattering
amplitude from the Born approximation.

For a smooth central potential, with a magnitude of order V;, and a range
of order a, we can qualitatively work out the validity constraint Eq. .
Taking k along the z axis, and looking at ¥ ~ 0 where the potential is most
important presumably (and relabeling 7' as ¥), the condition is

™m _'eikr ks
= /d:c47TTV(a:)ek < 1. (44)

When k& < a~!, we can ignore the phases in the integral, and it is given
roughly by

2 1
7T|%Ia2§ <1 (k<a™). (45)

Numerical coefficients are not to be trusted. On the other hand, when
k > a~ !, the phase factor oscillates rapidly and we can use stationary
phase approximation. The exponent is ikr + ikz, and it is stationary only
along the negative z-axis z = —r. Expanding around this point, it is
ikr + ikz = ik(z? + y?)/r + O(2%,y). The Gaussian integral over x, y
then gives a factor of 7r/k, while z is integrated along the stationary phase
direction from —a to 0. Therefore, the validity condition is given roughly by

2m a

h? 4k
On the other hand, we can estimate the total cross section in both limits.
The scattering amplitude in the Born approximation Eq. is

Vol < 1 (k> at). (46)

Lo 12 L
fORR) = —-77 [ daV(@)eT
T
1 2m_ 4r . _
~ g <) (47)

For a large momentum transfer, say along the x axis, y and z integral each
gives a factor of a because of no phase variation, while x integral oscillates
rapidly and cancels mostly; it leaves only ~ 1/¢q contribution from non-precise
cancellation. Therefore,

I 1 2m . ma? B
f(l)(k'la k) ~ _E?VOT (g>a h). (48)
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Because the momentum transfer ¢ is of the order of k (except the very forward
region which we neglect from this discussion), the total cross sections are
roughly
2
= (W) (h<a™)
m 71'(12 —

# (3#1) k>a).
It is interesting to note that, once the validity condition Egs. is

satisfied, the total cross section is always smaller than the geometric cross
section 4ma?.

(49)

g ~

1
oK 967m2 (k<a™) (50)
o < 4ma® (k> a™). (51)

If you find a Born cross section larger than the geometric cross section, you
should be worried.
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