
Midterm Exam (221A), due Oct 27, 4pm

1. A particle of mass m is allowed to move only along the circle of radius R on
a plane, x = R cos θ, y = R sin θ. [30]

(a) Show that the Lagrangian is L = m
2
R2θ̇2, and write down the canonical

momentum pθ and the Hamiltonian. [5]

(b) Write down the Heisenberg equation of motion, and solve them. (So far
no representation was taken.) [5]

(c) Write down the normalized position-space wave function ψk(θ) = 〈θ|k〉
for the momentum eigenstates pθ|k〉 = kh̄|k〉, and show that only k =
n ∈ Z are allowed because of the requirement ψ(θ + 2π) = ψ(θ). [5]

(d) Show the orthonormality 〈n|m〉 =
∫ 2π
0 ψ∗

nψmdθ = δn,m. [5]

(e) Now we introduce a constant magnetic field B inside the radius r <
d < R but no magnetic field outside r > d, with the vector potential is

(Ax, Ay) =

{
B
2
(−y, x) (r < d)

B
2

d2

r2 (−y, x) (r > d).
(1)

Write the Lagrangian, derive the Hamiltonian, and show that energy
eigenvalues are influenced by the magnetic field even though the particle
does not “see” the magnetic field directly. [10]

2. Consider a charged particle on the x-y plane in a constant magnetic field
~B = (0, 0, B) with the Hamiltonian (assume eB > 0) [45]

H =
Π2

x + Π2
y

2m
, Πi = pi −

e

c
Ai. (2)

(a) Use the so-called “symmetric gauge” ~A = B
2
(−y, x), and simplify the

Hamiltonian using the two annihilation operators ax, ay for a suitable
choice of ω. [5]

(b) Further define az = 1
2
(ax + iay), az̄ = 1

2
(ax − iay), and rewrite the

Hamiltonian using them. General states are given in the form

|n,m〉 =
(a†z)

n

√
n!

(a†z̄)
m

√
m!

|0, 0〉 (3)

starting from the ground state az|0, 0〉 = az̄|0, 0〉 = 0. Show that they
are Hamiltonian eigenstates of energies h̄ω(2n+ 1). [5]

(c) For an electron, what is the excitation energy under B = 100 kG? [5]
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(d) Work out the wave function 〈x, y|0, 0〉 in the position space. [5]

(e) |0,m〉 are all ground states. Show that their position-space wave func-
tions are given by

ψ0,m(z, z̄) = Nzme−eBz̄z/4h̄c, (4)

where z = x+ iy, z̄ = x− iy. Determine N . [5]

(f) Plot the probability density of the wave function for m = 0, 3, and 10
(use ContourPlot or Plot3D) on the same scale. [5]

(g) Assuming that the system is a circle of a finite radius R, show that
there are only a finite number of ground states. Work out the number
approximately for a large R. [5]

(h) Show that the coherent state efa†z |0, 0〉 represents a near-classical cy-
clotron motion in the position space. [10]

3. Read the article W.-T. Lee et al , “Observation of Scalar Ahoronov–Bohm
Effect with Longitudinally Polarized Neutrons,” Phys. Rev. Lett. 80, 3165
(1998), which realized the gedanken experiment Sakurai discusses in pp. 123–
125. Show that the change in the count rate in Fig. 5 is what is expected
theoretically. The magnetic moment of the neutron can be found, e.g., from
Particle Data Group at Lawrence Berkeley National Laboratory. [10]

4. Read the article T. Araki et al , “Measurement of Neutrino Oscillation with
KamLAND: Evidence of Spectral Distortion,” Phys. Rev. Lett. 94, 081801
(2005), which shows the neutrino oscillation, a quantum phenomenon demon-
strated at the largest distance scale yet (about 180 km). [20]

(a) The Hamiltonian for an ultrarelativistic particle is approximated by

H =
√
p2c2 +m2c4 ' pc+

m2c3

2p
, (5)

for p = |~p|. Suppose in a basis of two states, m2 is given as a two-by-two
matrix

m2 = m2
0I +

∆m2

2

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
. (6)

Write down the eigenstates of m2. [5]

(b) Calculate the probability for the state

(
1
0

)
to be still found in the

same state after time interval t for a definite momentum p. [5]

(c) Using the data shown in Fig. 3, estimate approximately values of ∆m2

and sin2 2θ. [5]
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