
221A Lecture Notes
Fine and Hyperfine Structures of the Hydrogen Atom

1 Introduction

With the usual Hamiltonian for the hydrogen-like atom (in the Gaussian
unit),

H0 =
~p2

2m
− Ze2

r
, (1)

we have the n2-fold degeneracy of states with the same principal quantum
number, or 2n2-fold once the spin degrees of freedom is included. In the real
world, however, the degeneracy is lifted by corrections that arise due to the
special relativity. Note also that m in the Hamiltonian is not the mass of
the electron, but the reduced mass m = (memp)/(me +mp) which is smaller
than the electron mass by about 0.05%.

It is useful to recall that the electron in the hydrogen atom is non-
relativistic, v � c, but not that slow. The expectation value of the kinetic
energy for the state |nlm〉 is

〈nlm| ~p
2

2m
|nlm〉 =

Ze2

2a0

=
(Ze2)2m

2h̄2 =
1

2
Z2α2(mc2). (2)

Equating it with 1
2
mv2, we find v = Zαc, and even for Z = 1 the electron is

moving at about 1% of the speed of light. We expect relativistic effects arise
suppressed by (v/c)2 = (Zα)2 to the usual energy levels, namely (Zα)4mc2

approximately.
Another interesting point is that the deuterium 2H, whose nucleus deuteron

is a bound state of a proton and nucleon, has a slightly different energy spec-
trum. Its reduced mass m = (memd)/(me + md) is about 0.025% different,
and hence the entire energy spectrum is scaled by the same amount. Even
though the difference sounds tiny, it is well detectable in spectroscopy. In
fact, the abundance of deuterium in the universe had been determined by
the slight shifts in the absorption lines where a hydrogen gas is “back-lit” by
distant quasars. See, e.g., David tytler, Xiao-Ming Fan, and Scott Burles, Na-
ture, 381, 207–209 (2002); or http://www.spacedaily.com/news/cosmology-01c.
html. The deuterium abundance provides one of the best ways to test the
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Big-Bang cosmology by comparing the calculation of light element abun-
dances to the observation. See, e.g., http://astron.berkeley.edu/∼mwhite/
darkmatter/bbn.html by our own Martin White.

2 Fine Structure

The fine structure of the hydrogen atom refers to the (Zα)2 correction to the
energy levels. It consists of three perturbation Hamiltonians. The first one
is the relativistic correction

Hrc = − (~p2)2

8m3c2
, (3)

which arises from the expansion of the relativistic kinetic energy

√
m2c4 + ~p2c2 = mc2 +

~p2

2m
− (~p2)2

8m3c2
+O(p6). (4)

The next one is the spin-orbit coupling

HLS = +g
1

4m2
ec

2

1

r

dVc

dr
(~L · ~S). (5)

Of course the central potential is Vc = Ze2/r for the hydrogen atom, but it is
left general so that it is applicable to multi-electron atoms as we will discuss
in 221B. The Coulomb field of the proton (or nucleus) appears partially as a
magnetic field in the moving reference frame of the electron, and the magnetic
moment of the electron ~µ = e

2mc
(~L + g~S). However, this argument suggests

twice as large contribution, as discussed in Sakurai, p. 305.
When Goudsmit and Uhlenbeck suggested the electron spin, apparently

Heisenberg wrote to them immediately asking what they have done with a
factor of two. They didn’t think they could calculate the spin-orbit cor-
rection, and they hadn’t. If they had, they may not have had courage to
publish it, according to Goudsmit’s reminiscence at http://www.lorentz.

leidenuniv.nl/history/spin/goudsmit.html. L.H. Thomas, in his paper
Nature 107, 514 (1926), pointed out that this naive calculation is incorrect.
Because is the electron goes around the nucleus, and namely has a constant
acceleration, the native Lorentz transformation of the electric field to the
magnetic field does not give the right answer. One has to set up the ref-
erence frame that is always parallel to each other, which inevitably rotates
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around in the electron rest frame. “The Story of Spin” by Sin-itiro Tomon-
aga has a detailed account on this point. At the end of the day, Thomas
showed that the spin-orbit coupling is a factor of two smaller than the naive
expectation, leading to the above Hamiltonian.

The third and the last one is the so-called Darwin term,

HDarwin =
h̄2

8m2
ec

2
∆Vc. (6)

∆ = (~∇)2 is the Laplacian. Note that, for the Coulomb potential Vc =
−Ze2/r, it becomes a delta function

HDarwin =
h̄2

8m2
ec

2
4πZe2δ(~x) (7)

because ∆1
r

= −4πδ(~r). The origin of this term is more subtle than the
previous two terms.

The relativistic wave equation was written down by Dirac, which we will
discuss in 221B. It predicted the existence of anti-matter, namely positron
for the electron and anti-proton for the proton, which were discovered later
by Caltech group (positron) and Berkeley group (anti-proton). At the same
time, it was a fully relativistic theory that predicts both the relativistic cor-
rection and the spin-orbit coupling automatically without resorting to any
arguments. They just come out from the equation. In addition, the wave
equation predicts that the relativistic electron doesn’t sit quietly. It under-
goes a frantic back-and-forth motion which Schrödinger named Zitterbewe-
gung , a German word made of “jitter” and “motion.” The position of the
electron is “smeared” due to this motion by a distance of so-called the Comp-
ton wavelength h̄/mec ' 4 × 10−11 cm. Therefore the potential energy the
electron experiences is not strictly at a particular position, but rather an
“average” around that point. The correction can be computed in a Taylor
expansion around the average position r0,

Vc(r) = Vc(r0) + 〈(∆~r)〉 · ~∇Vc(r0) +
1

2!
〈(∆ri)(∆rj)〉~∇i

~∇jVc(r0), (8)

and the spherical symmetry of Zitterbewegung says 〈∆ri〉 = 0, and 〈(∆ri)(∆rj)〉 =

( h̄2

4m2
ec2

)2δij. This argument leads to the Darwin term above. Again, the Dirac
theory leads to this term automatically as we will see in 221B.
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The first-order energy shifts due to these perturbations are simply expec-
tation values with respect to the unperturbed states. The only tricky aspect
is that the unperturbed states are degenerate. However, it is easy to see that
the spin-orbit coupling is diagonal in the eigenstates of the total angular mo-
mentum ~J2|njlmj〉 = j(j + 1)h̄2|njlmj〉 and Jz|njlmj〉 = h̄mj|njlmj〉, and
this is the basis we use.

First with the relativistic correction. Using the unperturbed Hamiltonian,

~p2

2m
|njlmj〉 =

(
− Ze2

2n2a
+
Ze2

r

)
|njlmj〉, (9)

we can rewrite

〈njlmj|Hrc|njlmj〉 = − 1

2mc2
〈njlmj|

(
− Ze2

2n2a
+
Ze2

r

)2

|njlmj〉

= −(Ze2)2

2mc2

(
1

4n4a2
− 1

n2a

〈
1

r

〉
+
〈

1

r2

〉)
= −(Ze2)2

2mc2

(
1

4n4a2
− 1

n2a

1

n2a
+

1

n3a2(l + 1
2
)

)

= −(Ze2)2

2mc2
1

4n4a2

(
4n

l + 1
2

− 3

)

= −(Zα)4mc2

8n4

(
4n

l + 1
2

− 3

)

= −(Zα)4mc2

8n4
×


(

4n
j
− 3

)
(j = l + 1

2
)(

4n
j+1

− 3
)

(j = l − 1
2
)

(10)

Here, I used the formulae in Eq. (A.6.8) in Sakurai with a = a0/Z =
h̄2/(Ze2m) = h̄c/(Zαmc2).

For the spin-orbit coupling, we use the identity

(~L · ~S)|njlmj〉 =
1

2
( ~J2 − ~L2 − ~S2)|njlmj〉

=
h̄2

2

(
j(j + 1)− l(l + 1)− 3

4

)
|njlmj〉

=
h̄2

2
×


(
j − 1

2

)
|njlmj〉 (j = l + 1

2
)(

−j − 3
2

)
|njlmj〉 (j = l − 1

2
)

(11)
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Using Vc = −Ze2

r
and g = 2,

HLS =
1

2m2
ec

2

Ze2

r3
(~L · ~S), (12)

and hence

〈njlmj|HLS|njlmj〉 =
Ze2

2m2
ec

2

h̄2

2

〈
1

r3

〉
×


(
j − 1

2

)
(j = l + 1

2
)(

−j − 3
2

)
(j = l − 1

2
)

(13)
It is known that 〈

1

r3

〉
=

1

a3

1

n3l(l + 1
2
)(l + 1)

(14)

(see, e.g., http://hep.ucsd.edu/∼branson/130/130b/130b notes prod/node96.

html). Note that this expectation value is singular for l = 0, while HLS = 0

identically because ~L = 0 and it is not a problem. We obtain

〈HLS〉 =
Ze2

2m2
ec

2

h̄2

2n3a3
×


1

j(j+ 1
2
)

(j = l + 1
2
)

−1
(j+ 1

2
)(j+1)

(j = l − 1
2
)

=
(Zα)4mc2

4

1

n3
×


1

j(j+ 1
2
)

(j = l + 1
2
)

−1
(j+ 1

2
)(j+1)

(j = l − 1
2
)

(15)

The Darwin term has an expectation value only for the s-states, because
ψ(r) ∝ rl.

〈HDarwin〉 =
h̄2

8m2
ec

2
4πZe2|ψ(0)|2, (16)

Using (A.6.3) in Sakurai,

Rn0(r) = −
{(

2

na

)3 (n− 1)!

2n[n!]3

}1/2

e−ρ/2L1
n(ρ), (17)

with ρ = 2r/na. Because L1
n(ρ) = d

dρ
Ln(ρ), we need O(ρ) term in Ln(ρ) to

find L1
n(0). From Eq. (A.6.5),

Lp(ρ) = p!− p!pρ+O(ρ2), (18)

and hence
L1

p(ρ) = −p!p+O(ρ). (19)
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Therefore, L1
p(0) = −p!p. We obtain

ψ(0) = Rn0(0)Y 0
0 = −

{(
2

na

)3 (n− 1)!

2n[n!]3

}1/2

(−n!n)
1

4π
, (20)

and hence

|ψ(0)|2 =
(

2

na

)3 (n− 1)!

2n[n!]3
(n!n)2 1

4π
=

1

4π

4

n3
. (21)

The expectation value then is

〈HDarwin〉 =
h̄2

8m2
ec

2
4πZe2

1

4π

4

n3
=

(Zα)2mc2

2n3
. (22)

Due to some reason, this expression coincides with that of the spin-orbit
coupling when l = 0, j = 1/2.

Finally, we put them together:

〈Hrc +HLS +HDarwin〉

=
(Zα)4mc2

8n3
×

 −4
j

+ 3
n

+ 2
j(j+ 1

2
)

(j = l + 1
2
)

− 4
j+1

+ 3
n
− 2

(j+ 1
2
)(j+1)

(j = l − 1
2
)

=
(Zα)4mc2

8n4
×
(

3− 8n

2j + 1

)
. (23)

It somehow depends only on j, no matter j = l ± 1
2
. This is an accidental

degeneracy between 2s1/2 and 2p1/2, between 3s1/2 and 3p1/2, between 3p3/2

and 3d3/2, etc.
As we will discuss in 221B, the Dirac equation predicts1

En,j = mc2

1 +

 Zα

n− j − 1
2

+
√

(j + 1
2
)2 − (Zα)2

2

−1/2

, (24)

and once expanded up to O(Zα)4, we find

En,j = mc2 − (Zα)2

2n2
+

(Zα)4(6j + 3− 8n)

8(2j + 1)n4
+O(Zα)6, (25)

1It is amusing that the application of the Bohr-Sommerfeld quantization condition leads
precisely to the same result.
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which agrees with Eq. (23).
The degeneracy between 2s1/2 and 2p1/2 etc is actually lifted by the Lamb

shift. This is an effect understood only in the QED (Quantum ElectroDy-
namics) which takes the zero-point fluctuation of photons as well as the po-
larization of the “vacuum” filled with negative energy electrons into account.
We will discuss these bizarre effects towards the end of 221B.

3 Hyperfine Interaction

We start with the Maxwell’s equations

~∇ · ~E = 4πρ, (26)

~∇× ~B =
1

c
~̇E +

4π

c
~, (27)

~∇× ~E = −1

c
~̇B, (28)

~∇ · ~B = 0. (29)

They are derived from the action

S =
∫
dtd3x

[
1

8π

(
~E2 − ~B2

)
− φρ+

1

c
~A · ~

]
. (30)

A magnetic moment couples to the magnetic field with the Hamiltonian
H = −~µ · ~B, and therefore appears in the Lagrangian as L = +~µ · ~B. We
add this term to the above action

S =
∫
dtd3x

[
1

8π

(
~E2 − ~B2

)
− φρ+

1

c
~A · ~+ ~µ · ~Bδ(~x− ~y)

]
, (31)

where ~y is the position of the magnetic moment. The equation of motion for
the vector potential is obtained by varying the action with respect to ~A,

~∇× ~B =
1

c
~̇E +

4π

c
~− 4πµ× ~∇δ(~x− ~y). (32)

In the absence of time-varying electric field or electric current, the equation
is simply

~∇× ~B = −4πµ× ~∇δ(~x− ~y). (33)
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It is tempting to solve it immediately as

~B = −~µδ(~x− ~y), (34)

but this misses possible terms of the form ~B ∝ ~∇f where f is a scalar
function.

To solve it, we use Coulomb gauge and write Eq. (33) as

−∆ ~A = −4πµ× ~∇δ(~x− ~y). (35)

Because ∆ 1
|~x−~y| = −4πδ(~x− ~y), we find

~A(~x) = −µ× ~∇ 1

|~x− ~y|
= ~µ× ~x− ~y

|~x− ~y|2
. (36)

The magnetic field is its curl,

~B(~x) = ~∇× ~A = −~µ∆
1

|~x− ~y|
+ ~∇(~µ · ~∇)

1

|~x− ~y|
. (37)

We rewrite the latter term as ∇i∇j = (∇i∇j − 1
3
δij∆) + 1

3
δij∆ so that the

terms in the parenthesis averages out for an isotropic source. They are called
the tensor term while the latter the scalar term. Then

~B(~x) = ~∇× ~A = −2

3
~µ∆

1

|~x− ~y|
+
[
~∇(~µ · ~∇)− 1

3
~µ∆

]
1

|~x− ~y|
. (38)

After performing differentiation, we find

~B(~x) =
8π

3
~µδ(~x− ~y) +

1

r3

[
3
~r

r

~µ · ~r
r

− ~µ

]
, (39)

where we used the notation ~r = ~x− ~y.
Finally the interaction of two magnetic moments, ~µ1 at ~x and ~µ2 at ~y, is

given by the magnetic field ~B(~x) created by the second magnetic moment at
~y

H = −~µ1 · ~B(~x) = −8π

3
~µ1 · ~µ2δ(~x− ~y)− 1

r3

[
3
~µ1 · ~r
r

~µ2 · ~r
r

− ~µ1 · ~µ2

]
. (40)

In the MKSA system, it is

H = −~µ1 · ~B(~x) = −2µ0

3
~µ1 ·~µ2δ(~x−~y)−

µ0

4π

1

r3

[
3
~µ1 · ~r
r

~µ2 · ~r
r

− ~µ1 · ~µ2

]
. (41)

8



For hyperfine splittings in the 1s state of the hydrogen atom Z = 1, the
second term vanishes because it is a spherical tensor with q = 2, and hence
only the first term is needed. The magnetic moments are (in MKSA)

~µe = ge
e

2me

~se, ~µp = gp
|e|

2mp

~sp, (42)

where ge = 2 and gp = 2.79×2. It is useful to define µe = |e|h̄
2me

and µN = |e|h̄
2mp

,

and

~µe = −µe
2~se

h̄
, ~µe = 2.79µN

2~sp

h̄
. (43)

Therefore the Hamiltonian is

H = +
2µ0

3
2.79µNµe

4

h̄2 (~sp · ~se)δ(~x). (44)

The first order perturbation of this Hamiltonian gives the hyperfine splitting

Ehf = +
2µ0

3
2.79µNµe

4

h̄2 (~sp · ~se)|ψ(0)|2, (45)

with |ψ(0)|2 = 1
π
a−3

0 for the 1s state. Finally, the eigenvalues of the spin
operators are

~sp · ~se =
1

2
((~sp + ~se)

2 − ~s2
p − ~s2

e) =

{
h̄2

4
(F = 1)

−3h̄2

4
(F = 0)

(46)

Therefore the difference in energies is

∆E = +
2µ0

3
2.79µNµe

4

h̄2

(
h̄2

4
− −3h̄2

4

)
1

πa3
0

=
2µ0

3
2.79µNµe

4

πa3
0

=
2µ0

3
2.79

eh̄

2me

eh̄

2mp

4

πa3
0

= 9.39× 10−25 J. (47)

Parametrically, it is α2(me/mp) times the binding energy, and hence even
more suppressed than the fine structure.

The cosmic thermal bath has T = 2.7 K and hence kT = 3.7 × 10−23 J,
which is much larger than the hyperfine splitting.
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4 Radio Astronomy

The deexcitation of the F = 1 states to the F = 0 state emits a photon of the
wavelength 21 cm, and it is called “the 21cm line.” It has had an important
impact on astronomy. Because the wavelengh is much longer than typical
dust particles, it can bee seen through the dust which blocks photons in the
optical range. Because the cosmic thermal bath is “hot enough” to excite the
hydrogen to the F = 1 states, we can see the 21cm lines even from the region
without stars and hot gas. Namely any hydrogen gas emits the 21cm line.
For instance, the spiral arms in our Milky Way galaxy had been discovered
using the 21cm line. Its frequency is 1420.4058MHz, and hence in the radio
range.

The 21 cm line is also seen from other galaxies. In particular, it can be
used to measure the rotation speed of hydrogen gas in a given galaxy using
the Doppler shifts. It has revealed that the hydrogen gas in the outskirts of
spiral galaxies is rotating way too fast to be held together by the gravity of
all stars combined. There must be much more mass than what meets the eye.
The mysterious dark mass has become known as “Dark Matter.” In fact, 23%
of the energy density of the universe is now believed to be the Dark Matter,
while the usual atoms, namely electrons, protons, and neutrons, make up
only about 4.4%. We are outweighed by more than a factor of five! As far
as we know, the Dark Matter is not dim stars. It is believed to be a kind of
elementary particle never seen in the laboratory; people are looking for the
signal of this particle underground, in space, and using particle accelerators.
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Figure 1: Emission of the 21cm line from a spiral galaxy. Taken from hep-
ph/9712538.
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Figure 2: The rotation curve of a spiral galaxy. The dashed line labeled
“disk” is the prediction of the rotation speed if the stars in the disk are
the only source of gravity to hold the galaxy together. Clearly the disk
contribution is not enough. The so-called “halo” of the galaxy which is not
made of stars is holding the galaxy together. It shows the evidence for “Dark
Matter” that makes up the galactic halos. Taken from hep-ph/9712538.
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