
HW #6 (221A), due Oct 6, 4pm

1. Apply the WKB method to the harmonic oscillator.

(a) Show that the energy levels comes out exactly.

(b) Work out the wave functions for n = 1, n = 10, and n = 20, and
compare to the exact results. (Hint: Mathematica knows Hermite
polynomials HermiteH[n,x].)

2. Bohr’s correspondence principle states that in the limit of large quan-
tum number the classical power radiated in the fundamental is equal to
the product of quantum energy (~ω0) and the reciprocal mean lifetime
of the transition from principal quantum number n to (n− 1).

(a) Show that the frequency of photon for a transition from principal
quantum number n � 1 to (n − k) (k � n) is the same as the
frequency of the classical radiation from the circular orbit with
the same energy. (Hint: the frequency of the classical radiation is
given by the frequency of the revolution around the nucleus and
its higher (interger multiple) modes.)

(b) (optional) Using non-relativistic approximations, show that in a
hydrogen-like atom the transition probability (reciprocal mean
lifetime) for a transition from a circular orbit of principal quantum
number n to (n− 1) is given classically by
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(c) For hydrogen compare the classical value above with the correct
quantum-mechanical results for the mean lives of the transitions
2p → 1s (1.6 × 10−9 sec), 4f → 3d (7.3 × 10−8 sec), 6h → 5g
(6.1× 10−7 sec).

3. The Hamitonian of a spin in the magnetic field is given by
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Assume ~B = (0, 0, B) is time-independent.



(a) Write down the Schrödinger equations for |Sz; +〉 =

(
1
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)
and

|Sz;−〉 =

(
0
1

)
, and solve them to find the time dependence of

these states.

(b) Write down the eigenstate |Sx; +〉 at t = 0 in Sz representation,
and its time evolution.

(c) Calculate the time-dependence of the expectation values of Sx, Sy,
and Sz in the above state to show that spin precesses.

4. (optional) The Maxwell equation (in Lorentz gauge) is(
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)
A0(~x, t) = 0. (3)

Consider it as a “Schrödinger equation” for the “light particle.” Here,
n(~x) is the index of refraction. Answer the following questions.

(a) Writing A0 = eiS/~, use “WKB Approximation” to write down the
“Hamilton–Jacobi” equation for S(~x, t).

(b) Show that it is the same as the Hamilton–Jacobi equation for a
particle in a potential V (~x) = − 1

2m
n(~x)2 with zero energy up to

an overall normalization factor.

(c) Assume that the index of refraction depends only on x. Then we
can separate variables t and y (forget z in this problem). Solve
for S̃(x, py, E) = S(x, y, t)−pyy +Et as a function of x in an inte-
gral expression in the way you normally do for Hamilton–Jacobi
equation.

(d) Write down integral expressions for t and y.

(e) Specialize to the case where n(x) = n1 for x < 0 and n(x) = n2

for x > 0. Show that the trajectory of the “light particle” follows
the usual rule of refraction.

Note The geometrical optics is none other than the “WKB approxima-
tion” for the Maxwell’s equation.


