
221A Lecture Notes
Variational Method

1 Introduction

Most of the problems in physics cannot be solved exactly, and hence need
to be dealt with approximately. There are two common methods used in
quantum mechanics: the perturbation theory and the variational method.

The perturbation theory is useful when there is a small dimensionless
parameter in the problem, and the system is exactly solvable when the small
parameter is sent to zero. The system is then studied in power series ex-
pansion in the small parameter. For instance, the quantum electrodynamics
is a perfect example where the perturbation theory is useful. The small pa-
rameter is the fine-structure constant α = e2/(4πε0h̄c) ' 1/137 � 1. In the
limit where α → 0, the photons and electrons are free particles and there is
no interaction; hence the system is exactly solvable. Physical quantities are
calculated in power series in α.

The variational method is useful to study the ground state, but not very
useful for the study of excited states. On the other hand, it is not required
that the system has a small parameter, nor that the system is exactly solv-
able in a certain limit. Therefore it has been useful in studying strongly
correlated systems, such as the fractional Quantum Hall effect. The study
of multi-electron atoms relies on the Hartree–Fock theory based on the vari-
ational method. Certain systems also exhibit drastic difference between the
perturbative ground state and true ground state, such as the superconduc-
tivity. The Bardeen–Cooper–Schrieffer (BCS) theory of supercoductivity is
based on the variational method. On the other hand, the success of the vari-
ational method depends on the initial “guess” what the ground-state wave
function looks like, and an excellent physical intuition is required for a suc-
cessful application.

2 Fundamentals

By definition, the ground state has the lowest energy eigenvalue of a given
system,

H|0〉 = E0|0〉, (1)
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while any other states have higher energy eigenvalues,

H|n〉 = En|0〉, En > E0. (2)

Suppose we have a Hamiltonian we cannot solve for eigenstates and eigen-
values exactly. Based on a physical intuition, we try to come up with a guess
what the ground state looks like: |0̃〉. Many prefer to call it an “ansatz” or
a “trial” wave function instead of a “guess” to make it sound scientific, but
a guess is nonetheless a guess. If the ansatz is not exactly right, it is a linear
combination of different Hamiltonian eigenstates,

|0̃〉 =
∞∑

n=0

|n〉〈n|0̃〉 =
∞∑

n=0

cn|n〉. (3)

The ansatz is exact if c0 = 1 and cn = 0 for all n 6= 0. The proper normal-
ization requires |c0|2 +

∑
n6=0 |cn|2 = 1.

The expectation value of the energy with the ansatz is

〈0̃|H|0̃〉 = |c0|2E0 +
∑
n6=0

|cn|2En ≥ |c0|2E0 +
∑
n6=0

|cn|2E0 = E0. (4)

Namely the expectation value must be always greater than or equal to the
ground state energy. This way, one can obtain an upper limit on the ground-
state energy eigenvalue by employing an arbitrary trial ket. Clearly a better
upper limit is obtained by a better trial ket, namely a better overlap with
the true ground state (e.g., c0 as close to unity as possible). The converse is
also true: a state with a lower expectation value of the Hamiltonian should
have a better overlap with the true ground state.

Given this observation, one can look for a ground state wave function by
introducing parameters to the trial ket |0̃(λ1, λ2, · · ·)〉, calculating the energy
expectation value

Ē(λ1, λ2, · · ·) = 〈0̃(λ1, λ2, · · ·)|H|0̃(λ1, λ2, · · ·)〉, (5)

and looking for as low expectation value as possible, namely minimizing it:

∂Ē

∂λ1

=
∂Ē

∂λ2

= · · · = 0. (6)

The success of this method still depends on having a good trial ket with
the good set of parameters. This is what is called the variational method:
you vary the parameters within the ansatz and find the parameter set that
minimizes the energy expectation value. If the ansatz is close enough to the
true ground state, so is the minimum energy expectation value. If the ansatz
has the correct functional form, it leads to the exact ground state.

2



3 Examples

If the functional form of the ground-state wave function is guessed correctly,
then the variational method gives the true ground-state wave function.

Sakurai discusses the example of the hydrogen atom, where the ground
state wave function is

ψ =
1√
4π

Z

a0

3/2

2e−Zr/a0 , (7)

where a0 = h̄2/(mee
2) is the Bohr radius (in Gaussian unit). The energy

eigenvalue is

E0 = −Ze
2

2a0

= −Z
2e4me

2h̄2 . (8)

See Appendix A.6 of Sakurai.
Suppose you didn’t know this exact form, but guessed that the ground-

state wave function is spherical and exponentially damping, ψ ∝ e−r/d. The
properly normalized wave function is then

ψ0̃ =
1√
πd3

e−r/d. (9)

Now we calculate the expectation value of the Hamiltonian

H =
~p2

2m
− Ze2

r
. (10)

The kinetic energy term gives

〈 ~p
2

2m
〉 =

1

πd3

−h̄2

2m

∫
4πr2dre−r/d

(
d2

dr2
+

2

r

d

dr

)
e−r/d =

1

πd3

−h̄2

2m

−1

d2
πd3 =

h̄2

2md2
.

(11)
The potential energy term, on the other hand, gives

〈−Ze
2

r
〉 =

1

πd3
(−Ze2)

∫
4πrdre−2r/d =

1

πd3
(−Ze2)4π

(
d

2

)2

= −Ze
2

d
. (12)

By minimizing the expectation value,

∂Ē(d)

∂d
=

∂

∂d

(
h̄2

2md2
− Ze2

d

)
= −2

h̄2

2md3
+
Ze2

d2
= 0, (13)

3



we find d = h̄2/(Zmee
2), the exact result. Note that this is the theoretically

justified version of the HW #3, problem 2.
Suppose, however, you didn’t guess it correctly and instead tried a Gaus-

sian,

ψ =
(

2

πd2

)3/2

e−r2/d2

. (14)

The expectation value of the kinetic energy is

〈 ~p
2

2m
〉 =

(
2

πd2

)3/2 −h̄2

2m

∫
4πr2dre−r2/d2

(
d2

dr2
+

2

r

d

dr

)
e−r2/d2

=
(

2

πd2

)3/2 −h̄2

2m

∫
4πr2dre−2r2/d2

(
4r2

d4
− 6

d2

)

=
3h̄2

2md2
. (15)

That of the potential energy is

〈−Ze
2

r
〉 = −Ze2

(
2

πd2

)3/2 ∫
4πr2dre−2r2/d2 1

r

= −Ze
2

d

2
√

2√
π
. (16)

The minimization of the expectation value yields

∂Ē

∂d
=

∂

∂d

(
3h̄2

2md2
− Ze2

d

2
√

2√
π

)
= − 3h̄2

md3
+
Ze2

d2

2
√

2√
π

= 0, (17)

and hence

d =
3
√
π h̄2

2
√

2 Zmee2
, Ēmin = − 4

3π

Z2e4me

h̄2 = 0.85E0. (18)

Even though the functional form is quite wrong, we still got a good answer
within 15%! Indeed the expectation value is larger in the absolute value (less
in magnitude) than the true ground-state energy.

Actually, with some thinking, we would not choose a Gaussian. It is
useful to think about the asymptotic behavior of the wave function. Because
the Coulomb potential goes to zero at the infinity, the bound state wave
function satisfies (asymptotically)

− h̄2

2m

d2

dr2
ψ = −|E|ψ (19)
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whose solution is
ψ ∝ e−κr, (20)

where κ =
√

2m|E|/h̄. Therefore, we know that Gaussian was not a very
good guess, but nonetheless it did quite well. On the other hand, this type
of consideration does suggest an exponential form, which turns out to be the
correct ansatz, and then the variational method fixes the exponent.

Sakurai discusses a particle in the box problem. Instead of the exact
ground-state wave function

ψ =
1√
a

cos
πx

2a
, (21)

he tries
ψ = |a|λ − |x|λ, (22)

and finds the result Ēmin = 1.00298E0, a remarkable agreement. In com-
ing up with this guess, the main argument was to make sure the boundary
condition, ψ(±a) = 0, is satisfied. Again, having some thoughts about the
boundary conditions turn out to be useful.

4 Excited States

In general, the application of the variational method is difficult for excited
states, but it is not impossible. One such way is to identify a quantum
number that distinguishes the excited state from the ground state; then one
can look for the lowest energy state with that quantum number. Because
of the different quantum numbers, the trial wave function is guaranteed to
be orthogonal to the ground state. The variational method gives a rigorous
upper limit on the lowest energy state with a given quantum number.

For instance, one can look for the 2p state of the hydrogen atom because
it is the lowest energy state with l = 1. Using a trial wave function that
involves Y m

1 , it is guaranteed to be orthogonal to the ground-state wave
function due to its distinct angular momentum quantum numbers. The true
wave function is

ψ =
(
Z

2a0

)3/2 Zr√
3a0

e−Zr/2a0Y m
1 , (23)

with the energy eigenvalue

E1 = −Ze
2

8a0

. (24)
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On general grounds, the radial wave functions start with the power rl

because of the centrifugal barrier − h̄2l(l+1)
2mr2 . Therefore, we can “guess”

ψ =
(

4

3d5

)1/2

re−r/dY m
1 . (25)

The prefactor is determined to make it properly normalized. The kinetic
energy term has the expectation value

〈 ~p
2

2m
〉 = − h̄2

2m
〈 d
dr2

+
2

r

d

dr
− l(l + 1)

r2
〉 =

h̄2

2md2
, (26)

while the potential energy term gives

〈−Ze
2

r
〉 = −Ze

2

2d
. (27)

The minimization of the expectation value

∂Ē(d)

∂d
=

∂

∂d

(
h̄2

2md2
− Ze2

2d

)
= − h̄2

md3
+
Ze2

2d2
= 0 (28)

gives

d =
h̄2

2Ze2me

(29)

and the energy

Emin = −Ze
2me

8h̄2 . (30)

This is the exact result as expected, because we had the correct functional
form.

It is interesting to see that the variational method may also give the cor-
rect result for excited states even when there is no distinct quantum number.
By extending the trial function for l = 0 to include a polynomial,

ψ = N(1 + kr)e−r/dY 0
0 , (31)

where

N−2 =
∫
r2dr(1 + kr)2e−2r/d =

1

4
d3(1 + 3dk + 3d2k2), (32)

6



we compute the expectation value of the energy. We find

Ē(d, k) = 〈H〉 =
1

1 + 3dk + 3d2k2

(
h̄2(1 + dk + d2k2)

2md2
− Ze2(2 + 4dk + 3d2k2)

2d

)
.

(33)
By minimizing it, Mathematica finds two real solutions

(d, k) = (
h̄2

Ze2me

, 0), (
2h̄2

Ze2me

,−Ze
2me

2h̄2 ) (34)

with energies

Ē = −Z
2e4me

2h̄2 , −Z
2e4me

8h̄2 , (35)

respectively. Indeed, the second solution is precisely that for the excited
n = 2 state,

ψ =
(
Z

2a0

)3/2 (
2− Zr

a0

)
e−Zr/2a0Y 0

0 , (36)

with the energy eigenvalue

E1 = −Ze
2

8a0

. (37)

What is going on here is clear: the excited state does not quite minimize the
expectation value, but it gives a local minimum for the function Ē(d, k).

Of course, this example is a cheat, because we used the exact form. In
general, the variational method can give a good approximation to the ground-
state wave function, and then one can try to find another wave function
carefully chosen to be orthogonal to the (approximate) ground-state wave
function. The better approximation the groundstate is, namely that it is
high in the true ground-state content, whatever that is orthogonal to it is
low in the ground-state content, and has a good chance of being an excited
state. If the groundstate had been obtained poorly, so is the excited state,
presumably even worse. There is no guarantee that this method works in
general, but this example shows it is worth a shot.

5 Caveat

One word of caution about the variational method is that there is no way
to judge how close your result is to the true result. The only thing you can
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do is to try out many Ansätze and compare them. For example, the Laugh-
lin’s paper on the Fractional Quantum Hall Effect, R.B. Laughlin, Phys.
Rev. Lett. 50, 1395–1398 (1983); http://link.aps.org/abstract/PRL/

v50/p1395, proposed a trial wave function that beat other wave functions
that had been proposed earlier, such as “Wigner crystal.” (Of course there
were many other reasons why his wave function was “right” to deserve the
Nobel Prize.) Once your wave function gives a lower energy than your rival’s,
you won the race (for a moment, at least).

6 Why Not Full Variation?

One of you were smart to ask: why don’t we do the full arbitrary variation
without taking a specific ansatz? Unfortunately, you will be brought back to
where you started, namely the time-independent Schrödinger equation.

One can set up an analog of the action, which is the expectation value of
the Hamitonian,

Ē[ψ∗, ψ] = 〈H〉 =
∫
dxψ∗Hψ. (38)

We can regard Ē as a functional of the wave function ψ, and try to minimize
it. Because ψ is complex, we can regard ψ and ψ∗ as independent. We
can take an arbitrary variation without respect to ψ∗ and require that the
expectation value is stationary.

At the first sight, it leads to a wrong result:

0 = δĒ =
∫
dxδψ∗Hψ, (39)

and hence
Hψ = 0. (40)

We got this wrong result because the expectation value must be varied sub-
ject to the requirement that the wave function stays properly normalized.
One way to enforce this requirement is to use the Lagrange multiplier,

Ē[ψ∗, ψ, λ] =
∫
dxψ∗Hψ − λ

(∫
dxψ∗ψ − 1

)
. (41)

We regard this expression as a functional of ψ, ψ∗, and a function of the
Lagrange multiplier λ. The stationary condition with respect to λ obviously
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requires the terms in the parentheses vanish; hence the properly normal-
ized wave function. There is an important additional effect: the stationary
condition with respect to ψ∗ also changes,

δĒ =
∫
dxδψ∗Hψ − λ

∫
dxδψ∗ψ = 0. (42)

Now that we can treat δψ∗ arbitrary, we find

Hψ − λψ = 0. (43)

In other words, the Lagrange multiplier, introduced as a mathematical tool
to enforce the proper normalization of the wave function, ends up being the
energy eigenvalue! This is the correct result. On the other hand, we are back
to square one. The reason we chose the variational method was because
we couldn’t solve the Schrödinger equation exactly. We unfortunately didn’t
gain anything.

By the way, the use of Lagrange multiplier that ends up being the energy
comes back prominently when we discuss the Hartree–Fock method of multi-
electron atoms in 221B.
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