
221A Lecture Notes
Time-Dependent Perturbation Theory

1 Introduction

The time-independent perturbation theory is very successful when the system
posses a small dimensionless parameter. It allows us to work out corrections
to the energy eigenvalues and eigenstates. However, it is not capable of
working out consequences of a perturbation that depends on time. Even
when the perturbation is time-independent, it is useful to study the time-
dependence of the system, for example in scattering or decay processes. Here
we would like to see how we can treat a time-dependent perturbation.

2 Interaction Picture

The interaction picture is a half way between the Schrödinger and Heisenberg
pictures, and is particularly suited to develop the perturbation theory. It is
also called the Dirac picture. It tries to discard the “trivial” time-dependence
due to the unperturbed Hamiltonian which is by assumption exactly solved
and is not of our interest anymore. Taking out the uninteresting time de-
pendence helps us to focus on questions such as the transitions from one H0

eigenstate to another due to the perturbation. By definition, H0 does not
cause an eigenstate to transform to another, while the perturbation can.

Just like in the time-independent case, the Hamiltonian is split into two
pieces, H = H0 + V . The perturbation Hamiltonian may or may not be
time-dependent, but the rest of the formalism is the same either case. By
assumption, H0 is solved exactly: we know its eigenvalues and eigenstates.
In the Schrödinger picture, the states evolve according to the Schrödinger
equation,

i~
d

dt
|α, t〉S = H|α, t〉S, (1)

while the observables (operators) don’t,

i~
d

dt
O = 0. (2)
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Because the time evolution due to the unperturbed Hamiltonian H0 is solved
and not of our interest, we try to eliminate the time-dependence due to H0

out of the state, by defining

|α, t〉I = e+iH0t/~|α, t〉S. (3)

The time-evolution of this state is seen as

i~
d

dt
|α, t〉I = i~

d

dt
e+iH0t/~|α, t〉S

=

(
i~
d

dt
e+iH0t/~

)
|α, t〉S + e+iH0t/~

(
i~
d

dt
|α, t〉S

)
= −H0e

+iH0t/~|α, t〉S + e+iH0t/~(H0 + V )|α, t〉S
= e+iH0t/~V |α, t〉S
= e+iH0t/~V e−iH0t/~e+iH0t/~|α, t〉S
= VI |α, t〉I . (4)

As desired, the state does not evolve in the absence of the perturbation, while
it does in its presence. The operator for time-evolution is, however, not just
the perturbation Hamiltonian, but is

VI(t) = e+iH0t/~V e−iH0t/~. (5)

This definition is true even when the perturbation depends on time, V =
V (t).

Because of the change of the picture, the operators now evolve in time.
In order to keep the expectation values of the operators the same as in the
Schrödinger picture, we need

OI(t) = e+iH0t/~Oe−iH0t/~. (6)

Therefore the operators follow a Heisenberg-like equation,

i~
d

dt
OI(t) = [OI(t), H0]. (7)

Note that the evolution is solely due to H0, not H or V .
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picture Heisenberg Interaction Schrödinger
state ket no evolution evolution by VI evolution by H
operators evolution by H evolution by H0 no evolution

Table 1: Table 5.2 of Sakurai, which shows the differences among the three
pictures.

3 Dyson Series

It is possible to obtain a formal solution to the Schrödinger-like equation in
the interaction picture. We introduce the time-evolution operator

|α, t〉I = UI(t)|α, 0〉S, (8)

which satisfies

i~
d

dt
UI(t) = VI(t)UI(t). (9)

The boundary condition is simply UI(0) = 1. Then we can recast the differ-
ential equation into an integral equation,

UI(t) = 1− i

~

∫ t

0

VI(t
′)UI(t

′)dt′. (10)

It is easy to verify that this expression satisfies both the differential equation
as well as the boundary condition. Now we can solve this integral equation
iteratively. At O(V 0), it is simply UI(t) = 1. At O(V 1), we substitute the
O(V 0) solution into the r.h.s. of the equation, and find

UI(t) = 1− i

~

∫ t

0

VI(t
′)dt′ +O(V 2). (11)

Now that we have UI up to O(V 1), we substitute this solution into the r.h.s.
again to find UI up to O(V 2),

UI(t) = 1− i

~

∫ t

0

dt′VI(t
′)+

(
−i
~

)2 ∫ t

0

dt′
∫ t′

0

dt′′VI(t
′)VI(t

′′)+O(V 3). (12)

By repeating this process, we find O(V n) term in UI(t) to be(
−i
~

)n ∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtnVI(t1)VI(t2) · · ·VI(tn). (13)

3



This infinite series expansion of the time-evolution operator in powers of VI

in the interaction picture is called the Dyson series.
It is customary to simplify the expression using the time-ordered prod-

ucts .∗ For instance, two operators A(t) and B(t) have their time-ordered
product

T (A(t)B(t′)) =

{
A(t)B(t′) t > t′

B(t′)A(t) t′ > t
(14)

Using this definition, the second-order piece in UI(t) can be rewritten as(
−i
~

)2 ∫ t

0

dt′
∫ t′

0

dt′′VI(t
′)VI(t

′′) =
1

2

(
−i
~

)2 ∫ t

0

dt′
∫ t

0

dt′′T (VI(t
′)VI(t

′′)).

(15)
In the original expression, the integration is done over a triangle shown in
Fig. 1, while in the latter expression it is integrated over the whole square.
Similarly, the O(V 3) term is integrated over the tetrahedron in Fig. 1, which
is one sixth= 1/3! of the volume of the cube. It can also be rewritten as(

−i
~

)2 ∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3VI(t1)VI(t2)VI(t3)

=
1

3!

(
−i
~

)2 ∫ t

0

dt1

∫ t

0

dt2

∫ t

0

dt3T (VI(t1)VI(t2)VI(t3)) (16)

as an integration over the entire cube. The n-th order term becomes(
−i
~

)n ∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtnVI(t1)VI(t2) · · ·VI(tn)

=
1

n!

(
−i
~

)n ∫ t

0

dt1

∫ t

0

dt2 · · ·
∫ t

0

dtnT (VI(t1)VI(t2) · · ·VI(tn)). (17)

Thanks to this new notation of the time-ordered products, the time-
evolution operator in the interaction picture can be written simply as

UI(t) = Te−i
R t
0 VI(t′)dt′ . (18)

This expression is understood in terms of its Taylor expansion, where the
n-th order in the expansion has n VI ’s which are ordered according to their
time arguments.

∗This point is mentioned in the footnote on page 326 of Sakurai, but is not elaborated.
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Figure 1: The integrations region of the O(V 2) and O(V 3) terms in the Dyson
series.

Actually, the path integral formulation gives this expression right away. Recall that
any insertion of observables in the path integral is automatically time ordered,∫

Dx(t)eiS[x(t)]/~x(tn) · · ·x(t1) = 〈xf , tf |T (x(tn) · · ·x(t1))|xi, ti〉 (19)

as shown in the lecture notes on the path integral. In this simple example, the time-
dependence of the initial and final states is dictated by the Hamiltonian obtained from the
action. The inserted operators are Heisenberg operators whose time evolution is dictated
also by the same Hamiltonian. In the perturbation theory, we split the action into two
pieces,

S[x(t)] =
∫ tf

ti

dt (pq̇ −H) =
∫ tf

ti

dt (pq̇ −H0 − V ) = S0[x(t)]−
∫ tf

ti

dtV. (20)

Therefore, the path integral is rewritten as∫
Dx(t)eiS[x(t)]/~ =

∫
Dx(t)eiS0[x(t)]/~e−i

R tf
ti

V dt/~ = 〈xf , tf |Te−i
R tf

ti
V dt/~|xi, ti〉. (21)

In the last expression, the time-evolution of the initial and final states is dictated by
the Hamiltonian derived from the action S0, namely H0, and the operator also has the
time-dependence dictated by H0, namely VI(t).

The Dyson series allows us to compute the perturbative expansion up to
any arbitrary order.

It is also useful to know that the time-evolution operator in the interaction
picture is related to the full time-evolution operator U(t) as

U(t) = e−iH0t/~UI(t), (22)

where U(t) satisfies

i~
d

dt
U(t) = HU(t). (23)
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This relationship can be verified as

i~
d

dt
e−iH0t/~UI(t) = H0e

−iH0t/~UI(t) + e−iH0t/~VI(t)UI(t)

=
(
H0 + e−iH0t/~VI(t)e

iH0t/~) e−iH0t/~UI(t)

= (H0 + V )eiH0t/~UI(t)

= He−iH0t/~UI(t), (24)

and the boundary condition U(0) = UI(0) = 1. Eq. (22) clearly shows that
the change from the Schrödinger to the interaction picture is done by e−iH0t/~.

4 Transition Probability

Equipped with the interaction picture, we would like to now work out the
probability that an H0 eigenstate H0|i〉 = Ei|i〉 (the initial state) becomes
another H0 eigenstate H0|f〉 = Ef |f〉 (the f inal state) due to the pertur-
bation V . Going back to the Schrödinger picture, the transition amplitude
is

A(i→ f, t) = 〈f |U(t)|i〉. (25)

Using Eq. (22), we find

A(i→ f, t) = 〈f |e−iH0t/~UI(t)|i〉 = e−iEf t/~〈f |UI(t)|i〉. (26)

Therefore the transition probability can be computed safely in the interaction
picture,

P (i→ f, t) = |A(i→ f, t)|2 = |〈f |UI(t)|i〉|2. (27)

Note that it is crucial that the state |f〉 is an eigenstate of H0 in this deriva-
tion; otherwise the amplitude computed in the interaction picture may not
be the same as that in the Schrödinger picture.

Therefore all we need to calculate is the matrix element

〈f |UI(t)|i〉 (28)

which can be worked out with the Dyson series.
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4.1 Fermi’s Golden Rule(s)

If the perturbation is time-independent V (t) = V , turned on at t = 0, the
lowest order term in the expansion of the transition amplitude for i 6= f is

−i
~

∫ t

0

dt′〈f |VI(t
′)|i〉 =

−i
~

∫ t

0

dt′〈f |eiH0t′/~V e−iH0t′/~|i〉

=
−i
~

∫ t

0

dt′e−i(Ei−Ef )t′/~〈f |V |i〉

=
e−i(Ei−Ef )t/~ − 1

Ei − Ef

Vfi. (29)

The transition probability is then

P (i→ f, t) = 4
sin2 ∆Et/2~

(∆E)2
|Vfi|2, (30)

to the lowest order in perturbation theory. Here, I used the notation ∆E =
Ei − Ef .

It is important to understand the time dependence of the probability. I
plotted the probability as a function of ∆E/~ at various times in Fig. 2. It
is clear that the probability is more and more peaked at ∆E = 0 as the
time goes on. The range in ∆E where the probability is sizable decreases as
∆E ' ~/t.

This is often talked about as a manifestation of the energy-time uncer-
tainty principle, ∆E∆t ∼ ~. Note that this “principle” is not as rigorous
as that between the position and the momentum. t is not even an operator!
What it means is that the energy may appear not conserved by the amount
∆E within the time interval ∆t because you have turned on the perturba-
tion: an obvious act of crime that makes the system not invariant under the
time translation and hence violate the conservation law of energy. Despite
the fact that this “principle” is not rigorous, it comes back repeatedly in
many different circumstances.

We are often interested in the behavior when t is large. In particular, we
are interested in the rate of the transition, namely the transition probability
per unit time

Γ(i→ f) = lim
t→∞

P (i→ f, t)

t
= lim

t→∞
4
sin2 ∆Et/2~
t(∆E)2

|Vfi|2. (31)

7



- 10 - 5 5 10

0.2

0.4

0.6

0.8

1

DE/h

t=0.5

- 10 - 5 5 10

2
4
6
8

10
12
14
16

DE/h

t=2.0

- 10 - 5 5 10

10

20

30

40

50

60

DE/h

t=4.0

Figure 2: The behavior of the transition probability at various times t = 0.5,
2.0, and 4.0 as a function of the energy difference ∆E/~.

At this point, we can use the identity

lim
t→∞

4
sin2(Ef − Ei)t/2~

t(Ef − Ei)2
= 2πδ(Ef − Ei)

1

~
. (32)

To see this, note that the peak becomes more and more prominent (∝ t) as
the time goes on at Ei−Ef = 0, while the rest of the function is suppressed
as 1/t. The area below the peak is given by∫

dEf 4
sin2(Ef − Ei)t/2~

t(Ef − Ei)2
= 2π

1

~
, (33)

and hence we find the identity above. Using this identity, we obtain the
Fermi’s golden rule #2,

Γ(i→ f) =
2π

~
δ(Ei − Ef )|Vfi|2. (34)

In order to extend the calculation to the next order, O(V 2), we find the term in
〈f |UI(t)|i〉 by using the completeness relation 1 =

∑
m |m〉〈m| as the sum over all intermediate

states, (
−i

~

)2 ∫ t

0

dt′
∫ t′

0

dt′′VI(t′)VI(t′′)

=
(
−i

~

)2 ∫ t

0

dt′
∫ t′

0

dt′′
∑
m

〈f |VI(t′)|m〉〈m|VI(t′′)|i〉

=
(
−i

~

)2 ∫ t

0

dt′
∫ t′

0

dt′′
∑
m

Vfme−i(Em−Ef )t′/~Vmie
−i(Ei−Em)t′′/~

=
−i

~

∫ t

0

dt′
∑
m

e−i(Em−Ef )t′/~ e−i(Ei−Em)t′/~ − 1
Ei − Em

VfmVmi

=
∑
m

VfmVmi

Ei − Em

(
e−i(Ei−Ef )t/~ − 1

Ei − Ef
− e−i(Em−Ef )t/~ − 1

Em − Ef

)
. (35)
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This expression looks asymmetric between the initial and the final states. However, it can
be rewritten as

=
∑
m

VfmVmi

(
e−i(Ei−Ef )t/~ − 1

(Ei − Ef )(Ei − Em)
− e−i(Em−Ef )t/~ − 1

(Ei − Em)(Em − Ef )

)
=

∑
m

VfmVmi

(
e−i(Ei−Ef )t/~

(Ei − Ef )(Ei − Em)
− e−i(Em−Ef )t/~

(Ei − Em)(Em − Ef )

+
1

(Ei − Ef )(Em − Ef )

)
= e−i(Ei−Ef )t/2~

∑
m

VfmVmi[
1

Ei − Ef

(
e−i(Ei−Ef )t/2~

Ei − Em
− ei(Ei−Ef )t/2~

Ef − Em

)
+

e−i(2Em−Ei−Ef )t/2~

(Ei − Em)(Ef − Em)

]
(36)

and hence is symmetric under f ↔ i, VfmVmi ↔ VimVmf apart from the overall phase
factor e−i(Ei−Ef )t/2~.

Going back to Eq. (35), the first term in the parentheses has the same behavior ∝ t
when Ei = Ef as the O(V ) term when t is large, while the second term does not grow.
Therefore, adding to the O(V ) term, we find†

Γ(i → f, t) = 2πδ(Ei − Ef )
1
~

∣∣∣∣∣Vfi +
∑
m

VfmVmi

Ei − Em

∣∣∣∣∣
2

. (37)

The O(V 2) term is said to be the virtual transition, and is clearly important especially
when the first-order contribution vanishes Vfi = 0. The initial state goes to a virtual
intermediate state that does not conserve the energy, but comes back to a real final state
that does conserve energy. Of course, this interpretation fails when Em = Ei. One has to
specify a prescription how the pole in the denominator can be avoided. This point will be
discussed later.

4.2 Harmonic Perturbation

The harmonic perturbation is a time-dependent perturbation V (t) = 2V0 cosωt,
where V0 is in general an operator. For the transition probability at the first

†According to the web site http://www.upscale.utoronto.ca/GeneralInterest/
DBailey/SubAtomic/Lectures/LectF14/Lect14.htm Scott Burt found for us, this for-
mula is the Fermi’s golden rule #1 when the first-order contribution vanishes Vfi = 0. It
is curious that the first-order contribution is actually the golden rule #2.
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order in perturbation, we go back to Eq. (29) and redo the integral,

−i
~

∫ t

0

dt′〈f |VI(t
′)|i〉 =

−i
~

∫ t

0

dt′〈f |eiH0t′/~V cosωte−iH0t′/~|i〉

=
−i
~

∫ t

0

dt′e−i(Ei−Ef )t′/~2 cosωt〈f |V0|i〉

=

(
e−i(Ei−Ef+~ω)t/~ − 1

Ei − Ef + ~ω
+
e−i(Ei−Ef−~ω)t/~ − 1

Ei − Ef − ~ω

)
Vfi. (38)

Following Eq. (32), the transition rate is

Γ(i→ f) =
2π

~
(δ(Ei − Ef + ~ω) + δ(Ei − Ef − ~ω))|Vfi|2. (39)

Therefore, the “energy conservation” is now changed to Ef = Ei ± ~ω.
It was expected that the energy is strictly not conserved in the presence

of a harmonic perturbation, because there is no time-translation invariance.
However, there is a discrete time translational invariance by t → t + 2π/ω.
Similarly to the discrete spatial translational invariance x → x + a that
led to the Bloch wave, which “conserves the momentum modulo 2π~/a,”
the energy is “conserved modulo ~ω,” consistent with the above result. In
fact, the second-order contribution can be seen to “conserve” the energy
as Ef = Ei ± 2~ω or Ef = Ei, the third-order term Ef = Ei ± 3~ω or
Ef = Ei ± ~ω, etc.

Sakurai discusses the photoelectric effect using this formalism. Strictly
speaking, the photoelectric effect must be discussed only after properly quan-
tizating the electromagnetic field to obtain “photons.” We will not go into
this discussion further here.

4.3 Relationship to the Time-independent Case

The Dyson series can be used to work out the results in the time-independent
perturbation theory. Even though the formalism explicitly includes time, it
can be applied to a case of perturbation with no explicit time dependence.

What we look at is the quantity

〈i(0)|UI(t)|i(0)〉 = 〈i(0)|e+iH0t/~U(t)|i(0)〉 = eiE
(0)
i t/~

∑
m

|〈i(0)|m〉N |2e−iEmt/~,

(40)
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where |m〉 is the exact eigenstates of the full Hamiltonian, and |i(0)〉 the
unperturbed state, following Sakurai’s notation of the time-independent per-
turbation theory.‡ The subscripts N indicate that the true eigenstates are
properly normalized. In particular, the perturbed state |i〉 has a large overlap
with |i(0)〉,

Z
1/2
i = 〈i(0)|i〉N . (41)

By singling out this contribution to the amplitude,

〈i(0)|UI(t)|i(0)〉 = Zie
−i(Ei−E

(0)
i )t/~ +

∑
m

|〈i(0)|m〉N |2e−i(Em−E
(0)
i )t/~. (42)

It is important to note that the exponent of the first term is ∆i = Ei−E(0)
i =

O(V ) and vanishes in the absence of perturbation.
Going back to the Dyson formula for the constant perturbation V (t) = V ,

we evaluate the contributions up to O(V 2) and study the consistency with
the time-independent results.

〈i(0)|UI(t)|i(0)〉 = 1 +
−i
~

∫ t

0

dt′〈i(0)|VI(t
′)|i(0)〉

+

(
−i
~

)2 ∫ t

0

dt′
∫ t′

0

dt′′〈i(0)|VI(t
′)VI(t

′′)|i(0)〉+O(V 3). (43)

Compared to the general result Eq. (42), we expect

〈i(0)|UI(t)|i(0)〉 = Zie
−i(Ei−E

(0)
i )t/~ +

∑
m6=i

|〈i(0)|m〉N |2e−i(Em−E
(0)
i )t/~

= Zi

(
1 +

−i
~

(∆
(1)
i + ∆

(2)
i )t+

1

2!

(
−i
~

)2

(∆
(1)
i t)2

)
+
∑
m6=i

|〈i(0)|m〉N |2e−i(E
(0)
m −E

(0)
i )t/~ +O(V 3), (44)

where Zi is evaluated up to O(V 2) (the lowest order), and 〈i(0)|m〉N up to

O(V ). in the last exponent Em is replaced by E
(0)
m because the difference gives

contributions only at O(V 3) (the inner product squared is already O(V 2)).

‡Note that he dropped the superscript (0) in his discussions on time-dependent pertur-
bation theory. I’m just recovering them.
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The O(V ) piece in the Dyson series is easy to work out:

−i
~

∫ t

0

dt′〈i(0)|VI(t
′)|i(0)〉 =

−i
~

∫ t

0

dt′〈i(0)|eiH0t′/~V e−iH0t′/~|i(0)〉

=
−i
~

∫ t

0

dt′〈i(0)|eiE
(0)
i t′/~V e−iE

(0)
i t′/~|i(0)〉

=
−i
~

∫ t

0

dt′〈i(0)|V |i(0)〉

=
−i
~
Viit. (45)

This agrees with the O(V ) piece in Eq. (44), namely −i
~ ∆

(1)
i t, if

∆
(1)
i = Vii, (46)

consistent with the result in time-independent perturbation theory, Eq. (5.1.37)
in Sakurai.

The O(V 2) piece is much richer. We insert the complete set of states
1 =

∑
m |m(0)〉〈m(0)| between two VI ’s, and separate out the contribution

from m = i.(
−i
~

)2 ∫ t

0

dt′
∫ t′

0

dt′′〈i(0)|VI(t
′)VI(t

′′)|i(0)〉

=

(
−i
~

)2 ∫ t

0

dt′
∫ t′

0

dt′′[
〈i(0)|VI(t

′)|i(0)〉〈i(0)|VI(t
′′)|i(0)〉+

∑
m6=i

〈i(0)|VI(t
′)|m(0)〉〈m(0)|VI(t

′′)|i(0)〉

]

=

(
−i
~

)2 ∫ t

0

dt′
∫ t′

0

dt′′

[
V 2

ii +
∑
m6=i

Vime
−i(E

(0)
m −E

(0)
i )t′/~Vmie

−i(E
(0)
i −E

(0)
m )t′′/~

]

=

(
−i
~

)2 ∫ t

0

dt′

[
V 2

ii t
′ +
∑
m6=i

|Vmi|2e−i(E
(0)
m −E

(0)
i )t′/~ ~

−i
e−i(E

(0)
i −E

(0)
m )t′/~ − 1

E
(0)
i − E

(0)
m

]

=

(
−i
~

)2
1

2
V 2

ii t
2 +

∑
m6=i

|Vmi|2

E
(0)
i − E

(0)
m

(
−i
~
t+

e−i(E
(0)
i −E

(0)
m )t/~ − 1

E
(0)
i − E

(0)
m

)

=

(
−i
~

)2
1

2
V 2

ii t
2 +

−i
~
∑
m6=i

|Vmi|2

E
(0)
m − E

(0)
i

t+
∑
m6=i

|Vmi|2

(E
(0)
i − E

(0)
m )2

e−i(E
(0)
m −E

(0)
i )t/~
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−
∑
m6=i

|Vmi|2

(E
(0)
i − E

(0)
m )2

. (47)

The first term is identified with 1
2!

(−i
~

)2
(∆

(1)
i t)2 in Eq. (44). The second

term is identified with −i
~ ∆

(2)
i t with

∆
(2)
i =

∑
m6=i

|Vmi|2

E
(0)
i − E

(0)
m

, (48)

again consistent with the time-independent result Sakurai’s Eq. (5.1.42). The
third term is the contribution of the mixing of other unperturbed states

|i〉 = |i(0)〉+
∑
m6=i

|m(0)〉 Vmi

E
(0)
i − E

(0)
m

, (49)

Sakurai’s Eq. (5.1.44). Finally, the last term is the O(V 2) piece in the wave
function renormalization,

Zi = 1−
∑
m6=i

|Vmi|2

(E
(0)
i − E

(0)
m )2

, (50)

Sakurai’s Eq. (5.1.48b).
In this fashion, we can see that the Dyson formula contains all information

we had obtained from the time-independent perturbation theory. Not only
that, it is surely applicable to the time-dependent problems and hence is very
powerful.

4.4 Energy Shift and Decay Width

In the presence of the discrete (e.g., excited bound states of the hydrogen
atom) and the continuum states (e.g., the ground state plus a photon), as in
the scattering problems (will be discussed in 221B), the sum over the inter-
mediate states cannot exclude the continuum states with the same energy.
Then the energy denominator 1/(Ei − Em) diverges; some prescriptions are
in order to deal with this singularity. As Sakurai discusses in Section 5.8, one
way to deal with it is to gradually turn on the perturbation from the infinite
past as V (t) = V eηt, whose net result is simply the replacement in Eq. (37),

1

Ei − Em

→ 1

Ei − Em + i~η
, (51)
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where η > 0 is an infinitesimal positive parameter taken to zero at the end
of calculations.

Because we have learned how to relate the Dyson series to the energy shifts
∆

(n)
i at the n-th order in perturbation theory in the previous section, we can

immediately apply it to the perturbation V (t) = V eηt to verify Sakurai’s
results, without resorting to the artificial limit of t0 → −∞, recast the result
in terms of a differential equation, integrate it again, and extract quantities
that are regular in this limit. We simply look for the piece that grows as t in
〈i(0)|UI(t)|i(0)〉 under this perturbation. The first order term is the same as
the constant perturbation in the limit η → 0. We look at the second order
piece following Eq. (47),(

−i
~

)2 ∫ t

0

dt′
∫ t′

0

dt′′〈i(0)|VI(t
′)VI(t

′′)|i(0)〉

=

(
−i
~

)2 ∫ t

0

dt′
∫ t′

0

dt′′[
V 2

iie
ηt′eηt′′ +

∑
m6=i

Vime
ηt′e−i(E

(0)
m −E

(0)
i )t′/~Vmie

ηt′′e−i(E
(0)
i −E

(0)
m )t′′/~

]
.(52)

Clearly we are not interested in the first term. The second term is

−i
~

∫ t

0

dt′
∑
m6=i

|Vmi|2eηt′e−i(E
(0)
m −E

(0)
i )t′/~ e

−i(E
(0)
m −E

(0)
i +i~η)t′/~ − 1

E
(0)
i − E

(0)
m + i~η

. (53)

Except for the energy denominator, everything else is regular in the limit
η → 0 which we take. Therefore

−i
~

∫ t

0

dt′
∑
m6=i

|Vmi|2e−i(E
(0)
m −E

(0)
i )t′/~ e

−i(E
(0)
i −E

(0)
m )t′/~ − 1

E
(0)
i − E

(0)
m + i~η

. (54)

The first term in the numerator cancels the oscillatory factor and gives rise
to a term that grows as t,

−i
~
t
∑
m6=i

|Vmi|2

E
(0)
i − E

(0)
m + i~η

. (55)

As before, we identify this term with −i
~ ∆

(2)
i t and we obtain

∆
(2)
i =

∑
m6=i

|Vmi|2

E
(0)
i − E

(0)
m + i~η

, (56)
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which is implicit in a combination of Eqs. (5.8.9), (5.8.10), and (5.8.15).
I do not repeat the rest of the discussions in Sakurai. Important points

are: (1) the imaginary part of the energy shift corresponds to the decay rate
of the state, (2) the energy is broadened by the decay rate, and (3) the
unitarity relates the total decay rate to the width of the state. We will come
back to the meaning of the imaginary energy and the decay width when we
discuss the scattering problems in 221B.

5 Two-State System

This note is the derivation of the formula Eq. (5.5.21) in Sakurai. He only
gives the result on the probability, while it is essential to see the result in
amplitudes in certain cases (like in the NMR discussed in the next section).

5.1 The Exact Solution

The Hamiltonian in matrix notation is

H0 =

(
E1 0
0 E2

)
, V (t) = γ

(
0 eiωt

e−iωt 0

)
. (57)

As usual, we define the coefficients ci(t) by

ψ(t) =

(
1
0

)
e−iE1t/~c1(t) +

(
0
1

)
e−iE2t/~c2(t) =

(
e−iE1t/~c1(t)
e−iE2t/~c2(t)

)
. (58)

The Schrödinger equation is i~ d
dt
|ψ〉 = H|ψ〉. We work out each side sepa-

rately.

i~
d

dt
ψ(t) =

(
E1e

−iE1t/~c1(t) + e−iE1t/~i~ċ1(t)
E2e

−iE2t/~c2(t) + e−iE2t/~i~ċ2(t)

)
. (59)

On the other hand,

Hψ(t) =

(
E1e

−iE1t/~c1(t) + γeiωte−iE2t/~c2(t)
E2e

−iE2t/~c2(t) + γe−iωte−iE1t/~c1(t)

)
. (60)

Equating the above two, we find(
e−iE1t/~i~ċ1(t)
e−iE2t/~i~ċ2(t)

)
=

(
γeiωte−iE2t/~c2(t)
γe−iωte−iE1t/~c1(t)

)
. (61)
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We write them in the following form

i~ċ1 = γei(ω−ω21)tc2, (62)

i~ċ2 = γe−i(ω−ω21)tc1. (63)

Here I introduced the notation ω21 = (E2 − E1)/~.
Now we would like to eliminate c1 to write down the differential equation

for c2. Using Eq. (63),

c1(t) =
1

γ
ei(ω−ω21)ti~ċ2(t), (64)

I take i~ d
dt

of both sides, and the l.h.s. can be rewritten with the Eq. (62),

γei(ω−ω21)tc2(t) = i~ċ1(t)

=
1

γ
ei(ω−ω21)t

(
−~(ω − ω21)i~ċ2(t) + (i~)2c̈2

)
. (65)

The equation is simplified to the form

c̈2 + i(ω − ω21)ċ2 +
γ2

~2
c2 = 0. (66)

Following the standard technique, we write c2 ∝ eiαt to solve the differ-
ential equation. Then the equation becomes

− α2 − (ω − ω21)α+
γ2

~2
= 0. (67)

This is a simple quadratic equation you can solve,

α± =
1

2

[
−(ω − ω21)±

√
(ω − ω21)2 + 4

γ2

~2

]
. (68)

In general, c2 is given by a linear combination of eiα±t,

c2(t) = A+e
iα+t + A−e

iα−t. (69)

Correspondingly, c1 is given by Eq. (64)

c1(t) =
1

γ
ei(ω−ω21)ti~ċ2(t) =

~
γ
ei(ω−ω21)t(A+α+e

iα+t + A−α−e
iα−t). (70)
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Now we impose the boundary condition

c1(0) = 1, c2(0) = 0. (71)

The corresponding conditions on the coefficients are

A+ + A− = 0, (72)

−~
γ

(A+α+ + A−α−) = 1. (73)

We find

A+ = −A− =
γ/~√

(ω − ω21)2 + 4γ2/~2
. (74)

The end result then is

c1(t) = ei 1
2
(ω−ω21)t

{
−i(ω − ω21)√

(ω − ω21)2 + 4γ2/~2
sin

1

2

√
(ω − ω21)2 + 4γ2/~2 t

+ cos
1

2

√
(ω − ω21)2 + 4γ2/~2 t

}
(75)

c2(t) = −ie−i 1
2
(ω−ω21)t 2γ/~√

(ω − ω21)2 + 4γ2/~2
sin

1

2

√
(ω − ω21)2 + 4γ2/~2 t.

(76)

The probability for the state 1 to evolve to state 2 is

|c2|2 =
4γ2/~2

(ω − ω21)2 + 4γ2/~2
sin2 1

2

√
(ω − ω21)2 + 4γ2/~2 t. (77)

This is the important equation Eq. (5.5.21a) in Sakurai.
In many cases, were are interested in the situation where γ is small. Then

for most values of ω, |c2|2 ∼ 4γ2/~2(ω − ω21)
2 � 1 and hence the transition

is negligible. However for a narrow range of |ω− ω21| ' γ/~, the probability
is non-negligible. In particular, the probability oscillates between zero and
unity on resonance ω = ω21.

On the other hand, in many cases we are also interested in the phase in-
formation beyond the probabilities. On the resonance ω = ω21, ci(t) simplify
drastically to

c1(t) = cos
γ

~
t

c2(t) = −i sin γ
~
t (78)
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5.2 Nuclear Magnetic Resonance

The Nuclear Magnetic Resonance (NMR) uses the exact solution obtained in
the previous section to study the composition of a material in a completely
non-destructive fashion. Because of this feature, it is used in the Magnetic
Resonance Imaging (MRI) in medicine to take picture of the slices of your
body. Even though I’m no expert on this imaging technique, I can at least
describe the basic concepts behind it.

Consider nuclear spins in a strong magnetic field. For the sake of clarify,
let us assume that we are talking about hydrogen atoms and protons as their
nuclei. The magnetic moment interaction is nothing but

H0 = −gp
e

2mpc
~Sp · ~B = −2.79× 2

e

2mpc
SzpBz, (79)

assuming ~B = (0, 0, Bz). For spin up and down states, this Hamiltonian
gives the two state system as in Eq. (57). To find the numerical value, we
use µN = e~

2mpc
= 3.152× 10−14MeV/T, and we obtain

H0 = 8.79× 10−8eV

(
1 0
0 −1

)
B

T
. (80)

The resonance frequency is therefore

νr =
ωr

2π
=
E2 − E1

2π~
= 42.5 MHz

B

T
, (81)

in the radio range for a magnetic field in the multi-tesla range.
We apply a time-varying magnetic field in the x-direction,

V = −gp
e

2mpc
SxpBx cosωt, (82)

where I ignored the space-dependence because it has a longer wave length
than the body parts in the radio range and the magnetic field can be regarded
approximately constant. Typically Bx is much smaller than Bz and hence γ
in the resonance is narrow; therefore practically the only interest is when ω
satisfies the resonance condition exactly. We decompose cosωt = 1

2
(e+iωt +

e−iωt), and only one term satisfies the resonance condition. Therefore we can
ignore the wrong frequency component and keep only the resonant term in
V . Then the Hamiltonian has precisely the form in Eq. (57).
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On resonance, we can use the amplitudes given in Eq. (78). The spin
state goes around a full circle,(

1
0

)
→ 1√

2

(
1
−i

)
→
(

0
−i

)
→ 1√

2

(
−1
−i

)
→
(
−1
0

)
. (83)

The second state is the spin pointing along the negative y-axis, the third
along the negative z-axis, the fourth along the positive y-axis, and the last
state is back along the positive z-axis (even though the 2π rotation gives an
overall minus sign of the state because of the half-odd spin). On the other
hand, off resonance, the spin barely moves at all.

For the use of imaging, we would like to pick up a slice of your, say, brain.
This is achieved by creating a slight gradient in the Bz field. If, for instance,
Bz(z) depends slowly as a function of z, only the slice of z which satisfies the
resonance condition makes the nuclear spins rotate.

The temperature of a human body is not cold enough to freeze the nuclear
spins. In the strong magnetic field, however, the spins are not completely
random; there is a slight preference for the proton spins to be along the
magnetic field. The measurements can be done with enough sensitivity to
pick up the small difference in the populations of different spin states. For
the rest of the discussions, I assume that all spins are initially along the
magnetic field for simplicity.

The way the MRI works is that you apply the oscillatory magnetic field
(radio wave) just for the duration that the spin is rotated from the positive
z-axis to the negative y-axis, the so-called “90◦ pulse.” In most parts of the
brain (or whatever), the resonance condition is not satisfied and the spins are
still along the z-direction. Only in the slice where the resonance condition is
satisfied, the spins rotate to point along the negative y-axis. Then you turn
off the radio.

The spins along the negative y-axis start to precess around the z-axis
because of Bz. Because all of them in this slice precess together, there is
a macroscopic size of a magnetic moment that precesses and produce an
oscillating dipole magnetic field that can be detected by a coil thanks to the
induced electricity.

To obtain x and y information on the picked z-slice, you combine “phase
encoding gradient” and “frequency encoding gradient.” After you turn off
the radio, the first step is to provide a slight gradient in Bz along the x
direction. Within the z-slice (elsewhere spins are ligned up with z), spins
start along the y direction, and start to precess. Now that Bz(x) depends
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slightly on x, the amount of precession angle θ is a function of x, θ(x). This
is the “phase encoding.” Next, you turn off the gradient along the x-axis,
and turn on a gradient along the y-axis. Spins precess around the z-axis with
different frequencies ω(y). This is the “frequency encoding.” At the end of
the day, the spin precession goes like cos(ω(y)t+θ(x)), keeping both x and y
information within the specified z-slice. By Fourier transform, you recover y
information, and the phase in each Fourier component gives x information.
This way, you recover full three-dimensional information. (Of course, θ(x)
is prediodic and the information gets ambiguous. By doing it several times
with different gradients for phase encoding, you can resolve the ambiguity.)

For the study of the chemical composition, however, the most important
pieces of information are the “relaxations.” The purely quantum mechanical
motion of spins is disturbed by their interaction with the environment, which
leads to the relaxation of the oscillatory signal. There are two components
to the relaxation. One of them (“spin-spin relaxation”) is that the spins that
originally precess together begin to dephase, namely some of them go slower
than the rest, and the magnetic moments do not exactly add up any more.
Even though each spins are still rotating, the macroscopic magnetic moment
gets reduced exponentially over a time scale called T2. The relaxation can
occur due to the spin-exchange reactions (two spins may interact to go from
| ↑↓〉 to | ↓↑〉, etc) or the chemical exchange (two atoms get swapped between
two molecules). The other (slower) relaxation is that the z-component of the
spins goes back to its equilibrium population. During the spin precession
(especially after dephasing) the spins are more or less randomized without
a net magnetic moment along the z-axis, but after the interaction of spins
with the environment (“spin-lattice relaxation”), they reach the population
in the thermal equilibrium over a time scale called T1. Two relation times T1

and T2 tell us the environment the spins live in, giving us information about
the chemical composition of the material, either water, fat, a kind of tumor,
etc.

I consulted web sites “The Basics of MRI” by J.P. Hornak, http://www.
cis.rit.edu/htbooks/mri/, and numerous other web sites I don’t remem-
ber anymore (sorry!).
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6 Sudden and Adiabatic Approximations

A type of time-dependent Hamiltonian of interest is

H =


H1 t < t1
H(t) t1 < t < t2
H2 t > t2

(84)

Namely, the Hamiltonian changes from H1 to H2 over a time interval τ =
t2 − t1. Assuming that the initial state was an eigenstate of the original
Hamiltonian H1, we would like to know what kind of state we have at t = t2
beyond which the system evolves according to the Hamiltonian H2.

There are two extreme cases of interest. One is when the change is sudden,
namely when τ is small. The other is when the change is slow , namely when
τ is large. We discuss each case separately, and then interesting examples.

6.1 Sudden Approximation

When the Hamiltonian is changed suddenly , the state cannot catch up with
the change and basically remains unchanged. This is the basis of the sudden
approximation.

Under this approximation, the initial state at t = t1

H1|i1〉 = Ei1|i1〉 (85)

is used unchanged at t = t2,

|ψ(t2)〉 = |i1〉. (86)

Beyond this point, the state evolves according to the Hamiltonian H2, which
can be worked out by its eigenstates and eigenvalues,

|ψ(t)〉 = e−iH2(t−t2)/~|i1〉 =
∑

f

e−iEf2
(t−t2)/~|f2〉〈f2|i1〉. (87)

The sudden approximation is expected to be good if the time scale of the
change τ is much smaller than the typical energy splittings ∆E among the
energy levels

τ � ~
∆E

. (88)
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This is because the appreciable change in the state is possible only when
different terms in a linear combination acquire substantially different phases,

e−iHt/~
∑

n

cn|n〉 = e−iEit/~
∑

n

cn|n〉e−i(En−Ei)t/~, (89)

requiring t >∼ ~/(En−Ei). In other words, the response time of a state is given
by the energy-time uncertainty principle ∆t ∼ ~/∆E, and the quick change
of the Hamiltonian within τ � ∆t does not change the state appreciably.

For instance, the beta decay of the tritium 3H → 3He + e− + ν̄e changes
the nuclear charge Z = 1 suddenly to Z = 2. The average kinetic energy
of the beta electron is K = 1

2
mv2 = 5.7keV, and hence the velocity of the

electron is
√

2K/m = 0.15c. The electron escapes the atom within time
of approximately τ = aB/(0.15c) = 0.529Å/(0.15c) = 1.2 × 10−18sec. In
comparison, the smallest energy difference that involves the ground state is
∆E = En=2 − En=1 = 10 eV, and hence the relevant time scale is ~/∆E =
6.4 × 10−17sec. Therefore, τ � ~/∆E and the sudden approximation is
justified. In most other beta decays, the kinetic energy of the beta electron
is much larger (MeV scale) and the approximation is even better.

6.2 Adiabatic Approximation

When the Hamiltonian is changed slowly , the state does not realize that it
is subject to a time-dependent Hamiltonian, and simply tracks the instanta-
neous eigenstates. This is the basis of the adiabatic approximation.

Under this approximation, you first solve the eigenvalue problem of the
Hamiltonian at each t,

H(t)|i〉t = Ei(t)|i〉t. (90)

The eigenstates are called the instantaneous eigenstates because they diago-
nalize the Hamiltonian at each instance. Note that the subscript t indicates
that it is the eigenstate at the instance t, as opposed to the true time depen-
dence of the state |i(t)〉. The adiabatic approximation gives

|i(t)〉 = e
−i

R t
t1

dt′Ei(t
′)
eiφ(t)|i〉t, (91)

namely that the actual time evolution of the state tracks the instantaneous
eigenstates. The dynamical phase is the integral of the instantaneous energy
eigenvalues Ei(t) over the period. In addition, there may be the geometrical
phase φ(t), which we will discuss later.

22



Since this is the opposite of the sudden approximation, the adiabatic
approximation is expected to be good if the time scale of the change τ is
much smaller than the response time,

τ � ∆t ∼ ~
∆E

. (92)

The formalism defines the rotating axis representation. It basically de-
fines a new picture where the basis kets are the instantaneous Hamiltonian
eigenstates. For detailed discussions of the applicability of the adiabatic
approximation, see, e.g., “Quantum Mechanics,” by Albert Messiah, Ams-
terdam, North-Holland Pub. Co. (1961).

The extent that the adiabatic approximation is violated can be expressed
by the “hopping probability,” namely the probability for one instantaneous
eigenstate to “hop” to another instantaneous eigenstate. There are exact
solutions for many examples of the type

H =

(
β1t V
V β2t

)
. (93)

In the infinite past, V is negligible and the Hamiltonian eigenstates are simply
upper or lower components. At t = 0, however, the diagonal elements vanish
and the two states mix maximally. Because of the no level crossing theorem,
the two states always remain non-degenerate; however they may come quite
close, violating the condition τ � ~/∆E. When A(t) is linear in time, it is
called the Landau–Zener model (L.D. Landau, Phys. Z. Sowjetunion 2 46
(1932); C. Zener, Proc. R. Soc. A 137 696 (1932)). The hopping probability
was found to be

Ph = e−2πV 2/~|β1−β2|. (94)

The time scale for which the off-diagonal term V is important is approxi-
mately τ = V/|β1 − β2|, while the minimum difference between two instan-
taneous energy eigenvalues is ∆E = 2V . Therefore we expect the hopping
probability is suppressed when τ � ~/∆E. Indeed the negative exponent is
approximately τ∆E/~ � 1.

The neutrinos generated by the fusion process in the Sun’s core propagate
through the entire mass of the Sun. Because the electron neutrino has the
potential energy due to its interaction with the electrons in the plasma, they
experience the time-dependent Hamiltonian of this type. For the high-energy
component of the neutrinos E >∼ 1MeV, the transition is adiabatic, while the
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low-energy component E <∼ 0.1MeV it is sudden. This energy dependence
explains why different experiments had measured different fluxes of solar
neutrinos, albeit all of them had been much less than predicted.

The adiabatic approximation crucially relies on the assumption that one can continu-
ously connect instantaneous eigenstates over a period uniquely. In particular, a degeneracy
of energy levels invalidates the approximation. Assuming that the energy levels maintain
non-degeneracy, one still needs to connect the instantaneous eigenstates from one time
to next. Therefore, it defines a complex line bundle over the space of parameters in the
Hamiltonian whose section is the instantaneous eigenstates |i〉t. A complex line bundle
requires a connection (“vector potential” in a generalized sense) 〈i|t d

dt |i〉t which is used
to relate the phase convention of the state at different times. Therefore the phase φ(t) is
related to the geometry of the fiber bundle, hence the name the “geometrical phase” or the
“topological phase.” M.V. Berry was the first one to realize this point clearly, published
in “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392,
45 (1984). In particular, when the space of parameters in the Hamiltonian is singular,
as in the example of the rotating magnetic field we will discuss in the next section, the
line bundle is twisted with non-zero Chern class. In such a case, the geometric phase can-
not be eliminated and has experimental consequences, e.g., in T. Bitter and D. Dubbers,
“Manifestation of Berry’s topological phase in neutron spin rotation,” Phys. Rev. Lett.,
59, 251 (1987). See Supplement I in Sakurai for more on this point.

6.3 Example

A good example is the spin in the time-dependent magnetic field. Consider
the magnetic field

~B = (Bx, By, Bz) = B(sin θ cosωt, sin θ sinωt, cos θ). (95)

The magnitude of the magnetic field is constant, while the direction rotates
around the z-axis.

The Hamiltonian is

H = −~µ · ~B = −µB
(

cos θ sin θe−iωt

sin θeiωt − cos θ

)
= µBz

(
−1 0
0 1

)
− µB⊥

(
0 e−iωt

eiωt 0

)
. (96)

Here, I used Bz = B cos θ, B⊥ = B sin θ. This Hamiltonian is the same
as the exactly solvable Hamiltonian Eq. (57) upon replacements ω → −ω,

24

http://link.aps.org/abstract/PRL/v59/p251
http://link.aps.org/abstract/PRL/v59/p251


z

B

q

Figure 3: Time-dependent magnetic field of Eq. (95).

E1 → −µBz, E2 → µBz, γ → −µB⊥. The frequencies in Eq. (68) are

α± =
1

2~

[
(~ω + 2µBz)±

√
(~ω + 2µBz)2 + 4µ2B2

⊥

]
. (97)

The solution with A− = 0 in Eqs. (69,70) gives

ψ(t) = A+

( ~
γ
α+e

−iωt

1

)
e−i(µBz−~α+)t/~. (98)

First we consider the fast change of the Hamiltonian, ω � ω21 = 2µBz/~.
The Hamiltonian changes by a finite amount within the time period τ ∼ 1/ω.
Neglecting corrections suppressed by µB/~ω, α+ ' ω and

ψ(t) =

(
e−iωt

0

)
eiωt, (99)

and the time-dependence cancels. Namely the state hardly moves over the
time interval τ ∼ 1/ω.

Now we consider the slow change of the Hamiltonian, ω � ω21 = 2µBz/~.
The phase is given by

µBz − ~α+ = −1

2

[
~ω +

√
(~ω + 2µBz)2 + 4µ2B2

⊥

]
= −µB − 1

2
~ω(1 + cos θ) +O(~ω)2. (100)
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We had to consider O(~ω) terms because the phase factor is multiplied by t
and we regard ωt ∼ O(1) to account for a finite change in the Hamiltonian.
On the other hand, when O(ω) corrections is not enhanced by t ∼ 1/ω, we
can safely ignore them. Therefore, up to this order, the exact solution in
Eq. (98) becomes

ψ(t) = A+

(
− (B+Bz)

B⊥
e−iωt

1

)
e−i(µBz−~α+)t/~

=

(
− cos θ

2
e−iωt

sin θ
2

)
eiµBt/~ei(1+cos θ)ωt/2. (101)

In the last step, we chose A+ to properly normalize the state. The state is
always the instantaneous eigenstate of the Hamiltonian with the eigenvalue
E = −µB.

The last phase factor is the Berry’s phase. When the magnetic field rotates around
the z-axis once, ωt = 2π, and the phase is eiπ(1+cos θ) = eimΩ, where m = 1/2 is the
magnetic quantum number Sz = m~, and Ω is the area swept by the magnetic field
Ω =

∫ cos θ

−1
d cos θ′

∫ 2π

0
dφ = 2π(1 + cos θ).

The Berry’s phase is non-trivial in this case because the line bundle is singular at the
origin ~B = 0 where the states with different m become degenerate. In order to consistently
define the complex line bundle, the origin must be removed from the base space, and hence
the base space is topologically equivalent to S2 × R. This base manifold supports first
Chern class c1. The complex line bundle is in fact twisted.
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