
221A Lecture Notes
Spherical Harmonics

1 Oribtal Angular Momentum

The orbital angular momentum operator is given just as in the classical
mechanics,

~L = ~x× ~p. (1)

From this definition and the canonical commutation relation between the po-
sition and momentum operators, it is easy to verify the commutation relation
among the components of the angular momentum,

[Li, Lj] = ih̄εijkLk. (2)

When using the position representation, the action of the angular mo-
mentum on any state is given by a differential operator

〈~x|~L|ψ〉 = ~x× h̄

i
~∇〈~x|ψ〉 = ~x× h̄

i
~∇ψ(~x). (3)

Loosely, we can write

~L = ~x× h̄

i
~∇, (4)

but you have to be careful on what this differential operator is acting on. If
you act on a position ket instead of a bra,

~L|~x〉 = −~x× h̄

i
~∇|~x〉. (5)

Whenever I write the orbital angular momentum operator as a differential
operator in this note, it is understood that it acts on a position bra instead
of ket.

With this caveat in mind, we can rewrite the orbital angular momentum
operator in the polar coordinates. Following the usual definitions

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ, (6)

1



we can rewrite the derivatives using the chain rule, ∂r

∂θ

∂φ

 =

 ∂rx ∂ry ∂rz
∂θx ∂θy ∂θz
∂φx ∂φy ∂φz


 ∂x

∂y

∂z



=

 sin θ cosφ sin θ sinφ cos θ
r cos θ cosφ r cos θ sinφ −r sin θ
−r sin θ sinφ r sin θ cosφ 0


 ∂x

∂y

∂z

 . (7)

We invert the matrix and find ∂x

∂y

∂z

 =
1

r sin θ

 r sin2 θ cosφ sin θ cos θ cosφ − sinφ
r sin2 θ sinφ sin θ cos θ sinφ cosφ
r sin θ cos θ − sin2 θ 0


 ∂r

∂θ

∂φ

 . (8)

Now the orbital angular momentum operators can be written in terms of
spherical coordinates,

Lx =
h̄

i

(
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ

)
, (9)

Ly =
h̄

i

(
cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ

)
, (10)

Lz =
h̄

i

∂

∂φ
. (11)

It is useful to take the combinations

L± =
h̄

i
e±iφ

(
±i ∂
∂θ

− cot θ
∂

∂φ

)
. (12)

Finally,

~L2 = −h̄2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (13)

The free-particle Hamiltonian is

~p2

2m
=
−h̄2

2m
(∂2

x + ∂2
y + ∂2

z ) =
−h̄2

2m

(
∂2

∂r2
+

2

r

∂

∂r

)
+

~L2

2mr2
. (14)

Looking at the expression for Lz, you can see that it is of the same form
as the momentum operator of a particle on a circle, whose eigenvalues are
quantized as nh̄ for n ∈ Z. Therefore, Lz is also quantized as mh̄ for m ∈ Z.
An immediate consequence is that no half-odd values are allowed for Lz, and
hence half-odd j cannot be obtained for orbital angular momentum. Only
integer j is possible.
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2 Spherical Harmonics

Now we look for eigenstates of ~L2 and Lz to find the Hilbert space for the
orbital angular momentum.

In any spherically symmetric systems, energy eigenstates can be given by
produce wave functions of the form∗

ψ(~x) = R(r)Y m
l (θ, φ). (15)

In other words, we are parameterizing the position eigenbasis in terms of
polar rather than Cartesian coordinates,

〈~x| = 〈r, θ, φ|. (16)

The spherical harmonics are defined as the wave functions of angular mo-
mentum eigenstates

Y m
l (θ, φ) = 〈θ, φ|l,m〉. (17)

Sakurai uses the notation 〈~n| and call them “direction eigenkets.”
Clearly, the defintions of angular momemum eigenstates

~L2|l,m〉 = l(l + 1)h̄2|l,m〉, (18)

Lz|l,m〉 = mh̄|l,m〉, (19)

translate to the differential equations

− h̄2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
Y m

l = l(l + 1)h̄2Y m
l , (20)

h̄

i

∂

∂φ
Y m

l = mh̄Y m
l . (21)

The latter equation is easy to solve: the azimuth dependence of the spherical
harmonics must be eimφ. But figuring out the polar angle dependence needs
more work. The rest of the discussion here is on this issue.

Both in the case of the harmonic oscillator and the Landau levels (energy
levels of a charged particle in a uniform magnetic field), it was useful to write

∗This corresponds to the separation of variables in Hailton–Jacobi theory, where the
action S is written as a sum of different pieces S(r) + S(θ, φ). Because the wave function
corresponds to eiS/h̄, it is natural for the wave function to be given by a product of different
pieces.
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down an equation for the ground state of the form a|0〉 = 0. It was useful
because it gave us a linear differential equation instead of a quadratic one
(e.g., Schrödinger equation). The linear differential equations are far easier
to solve. We can take the same strategy for the spherical harmonics.

2.1 Derivation of Spherical Harmonics

We know from the general representation theory of angular momenta that
L−|l,−l〉 = 0 because it cannot be lowered any more. Sakurai starts with
|l, l〉 instead. Of course you get the same result, but I find this way somewhat
less confusing. In the position representation, we find

0 = 〈θ, φ|L−|l,−l〉 =
h̄

i
e−iφ

(
−i ∂
∂θ

− cot θ
∂

∂φ

)
Y −l

l (θ, φ) = 0. (22)

On the other hand, we know already that

− lh̄Y −l
l = 〈θ, φ|Lz|l,−l〉 =

h̄

i

∂

∂φ
Y −l

l (23)

and hence the azimuth dependence of Y −l
l is Y −l

l (θ, φ) = f(θ)e−ilφ. Therefore,
Eq. (22) becomes (

−i d
dθ

+ il cot θ

)
f(θ) = 0. (24)

This equation is solved easily, by writing it as

1

f
df = l cot θdθ, (25)

and integrating both sides to

log f = l log sin θ + const. (26)

Therefore,
f(θ) = c sinl θ (27)

with an overall normalization constant c.
Putting things together, we find

Y −l
l (θ, φ) = c sinl θe−ilφ. (28)
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The absolute value of c can be fixed by the normalization

1 =
∫
dΩ|Y l

l |2 =
∫ 1

−1
d cos θ

∫ 2π

0
dφ|c|2 sin2l θ. (29)

φ integral trivially gives a factor of 2π. The θ integral is most conveniently
done using the variable x = cos θ,

1 = 2π|c|2
∫ 1

−1
dx(1− x2)l.. (30)

Writing 1−x2 = (1−x)(1+x), and further change the variable to x = −1+2t,

1 = 2π|c|2
∫ 1

0
2dt (2t(2− 2t))l = 2π|c|222l+1

∫ 1

0
dt tl(1− t)l. (31)

The integral is nothing but the Beta function

B(p, q) =
∫ 1

0
dt tp−1(1− t)q−1 =

Γ(p)Γ(q)

Γ(p+ q)
. (32)

Therefore,

1 = 2π|c|222l+1 Γ(l + 1)Γ(l + 1)

Γ(2l + 2)
= 4π|c|222l l!l!

(2l + 1)!
. (33)

We find

|c| = 1

2ll!

√
(2l + 1)!

4π
. (34)

The phase of c is fixed by picking a convention. The commonly used
convention (the same as Sakurai’s) is not to have an additional phase factor

Y −l
l (θ, φ) =

1

2ll!

√
(2l + 1)!

4π
sinl θe−ilφ. (35)

Now that we know Y −l
l , we can keep acting L+ on it to obtain all Y m

l .
Recall that the general discussion of angular momentum taught us that

L+|l,m〉 =
√
l(l + 1)−m(m+ 1)|l,m+ 1〉 =

√
(l −m)(l +m+ 1)|l,m+ 1〉.

(36)
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Then we find

Y m
l (θ, φ) =

1

h̄
√

(l +m)(l −m+ 1)

1

h̄
√

(l +m− 1)(l −m+ 2)

· · · 1

h̄
√

(2)(l + l − 1)

1

h̄
√

(1)(l + l)

[
h̄

i
eiφ

(
i
∂

∂θ
− cot θ

∂

∂φ

)]l+m

Y −l
l (θ, φ)

=

√√√√ (l −m)!

(2l)!(l +m)!

[
eiφ

(
∂

∂θ
+ i cot θ

∂

∂φ

)]l+m

Y −l
l (θ, φ) (37)

Now the question is to bring it to a more usable form.
The φ derivatives always give eigenvalues. But each time L+ acts, there

is a factor of e+iφ and makes the eigenvalue of −i∂/∂φ increase one by one.
Therefore,

Y m
l (θ, φ) =

1

2ll!

√
(2l + 1)!

4π

√√√√ (l −m)!

(2l)!(l +m)!
eimφ

(
d

dθ
− (m− 1) cot θ

)
(
d

dθ
− (m− 2) cot θ

)
· · ·

(
d

dθ
+ (l − 1) cot θ

)(
d

dθ
+ l cot θ

)
sinl θ.

=
1

2ll!

√√√√(2l + 1)(l −m)!

4π(l +m)!
eimφ

(
d

dθ
− (m− 1) cot θ

)
(
d

dθ
− (m− 2) cot θ

)
· · ·

(
d

dθ
+ (l − 1) cot θ

)(
d

dθ
+ l cot θ

)
sinl θ.

(38)

Here we have cancelled factors of h̄ and i. The next trick we need is to write(
d

dθ
+ k cot θ

)
=

1

sink θ

d

dθ
sink θ (39)

Then

Y m
l (θ, φ) =

1

2ll!

√√√√(2l + 1)(l −m)!

4π(l +m)!
eimφ

(
1

sin−(m−1) θ

d

dθ
sin−(m−1) θ

)
(

1

sin−(m−2) θ

d

dθ
sin−(m−2) θ

)
· · ·

(
1

sinl−1 θ

d

dθ
sinl−1 θ

)(
1

sinl θ

d

dθ
sinl θ

)
sinl θ
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=
1

2ll!

√√√√(2l + 1)(l −m)!

4π(l +m)!
eimφ sinm θ

(
1

sin θ

d

dθ

)l+m

sin2l θ

=
1

2ll!

√√√√(2l + 1)(l −m)!

4π(l +m)!
eimφ sinm θ

(
− d

d cos θ

)l+m

sin2l θ

=
(−1)l+m

2ll!

√√√√(2l + 1)(l −m)!

4π(l +m)!
eimφ(1− x2)m/2 d

l+m

dxl+m
(1− x2)2l. (40)

In the last line, we used the variable x = cos θ.

2.2 Legendre Polynomials

Here are a few new notations. Legendre polynomials are defined by

Pl(x) =
(−1)l

2ll!

dl

dxl
(1− x2)l (41)

Pm
l (x) = (1− x2)m/2 d

m

dxm
Pl(x). (42)

The definition Eq. (42) works only for m > 0. Another way to write Pm
l is

just putting them together,

Pm
l (x) =

(−1)l

2ll!
(1− x2)m/2 d

l+m

dxl+m
(1− x2)l. (43)

This expression allows you to pick m < 0.
Pm

l is called associated Legendre polynomials, and Pm
l (x) = Pl(x). The

definitions look complicated, but they are just polynomials! Pl is a polyno-
mial of order l. Pm

l has this funny factor (1−x2)m/2 with a fractional power,
but we will set x = cos θ in the end, and (1−x2)m/2 = sinm θ. Remember θ is
the polar angle, and we only consider 0 ≤ θ ≤ π so that sin θ ≥ 0. Therefore,
Pm

l is a polynomial of order m in sin θ and l −m in cos θ.
Now let us prove a surprising identity

P−m
l (x) = (−1)m (l −m)!

(l +m)!
Pm

l (x). (44)

Let us start with dl+m

dxl+m (1 − x2)l for m > 0 which appears in Pm
l (x). We

expand it out and see how it can be related to dl−m

dxl−m (1− x2)l

dl+m

dxl+m
(1− x2)l =

dl+m

dxl+m
(1− x)l(1 + x)l
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=
l+m∑
r=0

l+mCr

(
dr

dxr
(1− x)l

)(
dl+m−r

dxl+m−r
(1 + x)l

)
. (45)

Even though the sum extends for 0 ≤ r ≤ l + m, the term in the first
parentheses vanishes for r > l while the second for l+m− r > l. Therefore,
the sum is taken only for m ≤ r ≤ l. Then

dl+m

dxl+m
(1− x2)l

=
l∑

r=m
l+mCr

(−1)rl!

(l − r)!
(1− x)l−r l!

(r −m)!
(1 + x)r−m

=
l−m∑
s=0

l+mCm+s
(−1)m+sl!

(l −m− s)!
(1− x)l−m−s l!

s!
(1 + x)s. (46)

In the last line, I rewrote it with r = m+ s. Now I multiply it by (1− x2)m

and divide by it,

dl+m

dxl+m
(1− x2)l

=
1

(1− x2)m

l−m∑
s=0

l+mCs+s
(−1)m+sl!

(l −m− s)!
(1− x)l−s l!

s!
(1 + x)m+s

=
1

(1− x2)m

l−m∑
s=0

(l +m)!

(m+ s)!(l − s)!

(−1)m+sl!

(l −m− s)!
(1− x)l−s l!

s!
(1 + x)m+s

=
1

(1− x2)m

l−m∑
s=0

(l +m)!

s!(l −m− s)!

(−1)m+sl!

(l − s)!
(1− x)l−s l!

(m+ s)!
(1 + x)m+s

=
(l +m)!

(l −m)!

1

(1− x2)m

l−m∑
s=0

(l −m)!

s!(l −m− s)!
(−1)m+s

(
(−1)s d

s

dxs
(1− x)l−s

)(
dl−m−s

dxl−m−s
(1 + x)m+s

)

=
(l +m)!

(l −m)!

(−1)m

(1− x2)m

l−m∑
s=0

l−mCs

(
ds

dxs
(1− x)l−s

)(
dl−m−s

dxl−m−s
(1 + x)m+s

)

=
(l +m)!

(l −m)!

(−1)m

(1− x2)m

dl−m

dxl−m
(1− x2)l. (47)

Multiplying both sides of the equation by (−1)l

2ll!
(1− x2)m/2, we find

Pm
l (x) =

(−1)l

2ll!
(1− x2)m/2 d

l+m

dxl+m
(1− x2)l
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=
(l +m)!

(l −m)!
(−1)m (−1)l

2ll!

1

(1− x2)m/2

dl−m

dxl−m
(1− x2)l

=
(l +m)!

(l −m)!
(−1)mP−m

l (x). (48)

This is indeed Eq. (44).
The orthogonality relation among Legendre polynomials is important:∫ 1

−1
dxPm

n (x)Pm
l (x) =

2

2l + 1

(l +m)!

(l −m)!
δn,l. (49)

Note that both polynomials share the same m.
It can be shown as follows. In this discussion, we assume m ≥ 0. But

m ≤ 0 case follows from Eq. (44). We substitute in the explicit expression,∫ 1

−1
dxPm

n (x)Pm
l (x)

=
∫ 1

−1
dx

(
(−1)n

2nn!
(1− x2)m/2 d

n+m

dxn+m
(1− x2)n

)
(

(−1)l

2ll!
(1− x2)m/2 d

l+m

dxl+m
(1− x2)l

)

=
(−1)n+l

2n+ln!l!

∫ 1

−1
dx(1− x2)m

(
dn+m

dxn+m
(1− x2)n

)(
dl+m

dxl+m
(1− x2)l

)
.(50)

To show the orthogonality when n 6= l, let us assume n > l without a
loss of generality. The point is to keep doing integration by parts so that
dn+m/dxn+m4 acting on (1 − x2)n+m acts on the rest of the integrand. But
the rest is a polynomial of order 2m + 2l − (l + m) = l + m < n + m, and
its (n+m)-th derivative vanishes. At each integration by parts, the surface
term also vanishes. For the first m-times, the surfact term vanishes because
of (1 − x2)m factor. For the remaining n-times, it vanishes because of the
(1 − x2)n factor. This proves the orthogonality. When n = l, we again go
through the same procedure and only the top power in x contributes,∫ 1

−1
dxPm

l (x)Pm
l (x)

=
(−1)l+l

2l+ll!l!
(−1)l+m

∫ 1

−1
dx(1− x2)l

(
dl+m

dxl+m
(1− x2)m dl+m

dxl+m
(1− x2)l

)
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=
(−1)l+l

2l+ll!l!
(−1)l+m

∫ 1

−1
dx(1− x2)l

(
dl+m

dxl+m
(−1)m(x2)m dl+m

dxl+m
(−1)l(x2)l

)

=
1

22ll!l!

∫ 1

−1
dx(1− x2)l

(
dl+m

dxl+m
(x2)m (2l)!

(l −m)!
xl−m

)

=
1

22ll!l!

∫ 1

−1
dx(1− x2)l(l +m)!

(2l)!

(l −m)!
. (51)

Change the variable to x = −1 + 2t,∫ 1

−1
dxPm

l (x)Pm
l (x) =

1

22ll!l!

(2l)!(l +m)!

(l −m)!

∫ 1

0
2dt(2t(2− 2t))l

=
2

l!l!

(2l)!(l +m)!

(l −m)!

∫ 1

0
dttl(1− t)l

=
2

l!l!

(2l)!(l +m)!

(l −m)!

Γ(l + 1)Γ(l + 1)

Γ(2l + 2)

=
2

(2l + 1)!

(2l)!(l +m)!

(l −m)!

=
2

2l + 1

(l +m)!

(l −m)!
(52)

2.3 More Conventional Expression

Compared to Eq. (40), we see that Pm
l gives Y m

l ,

Y m
l = (−1)m

√√√√(2l + 1)(l −m)!

4π(l +m)!
eimφPm

l (cos θ). (53)

A special case of this is

Y 0
l =

√
(2l + 1)

4π
Pl(cos θ). (54)

When m < 0, an alternative expression is obtained by using the identity
Eq. (44),

Y m
l =

√√√√(2l + 1)(l − |m|)!
4π(l + |m|)!

eimφP
|m|
l (cos θ). (55)

In particular, this expression shows a relation

Y m
l = (−1)m(Y −m

l )∗. (56)
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2.4 Orthonormality and Completeness

You can verify the orthonormality of spherical harmonics explicitly. Here
and below, Ω refers to the polar coordinates θ, φ, and the integration volume
is dΩ = d cos θdφ.∫

dΩY m
l (Ω)(Y m′

l′ (Ω))∗

= (−1)m+m′

√√√√(2l + 1)(l −m)!

4π(l +m)!

√√√√(2l′ + 1)(l′ −m′)!

4π(l′ +m′)!∫ 1

−1
d cos θ

∫ 2π

0
dφPm

l (cos θ)Pm′

l′ (cos θ)eimφe−im′φ. (57)

Because φ integral vanishes unless m = m′,

= 2πδm,m′

√√√√(2l + 1)(l −m)!

4π(l +m)!

√√√√(2l′ + 1)(l′ −m)!

4π(l′ +m)!

∫ 1

−1
dxPm

l (x)Pm
l′ (x)

= 2πδm,m′

√√√√(2l + 1)(l −m)!

4π(l +m)!

√√√√(2l′ + 1)(l′ −m)!

4π(l′ +m)!

2

2l + 1

(l +m)!

(l −m)!
δl,l′

= 2πδm,m′δl,l′
(2l + 1)(l −m)!

4π(l +m)!

2

2l + 1

(l +m)!

(l −m)!
δl,l′

= δm,m′δl,l′ . (58)

This is an explicit verification of the expected orthonormality

δm,m′δl,l′ = 〈l′,m′|l,m〉 =
∫
dΩ〈l′,m′|θ, φ〉〈θ, φ|l,m〉 =

∫
dΩ(Y m′

l′ )∗Y m
l . (59)

The completeness relation is

δ2(Ω− Ω′) = 〈θ, φ|θ′φ′〉
=

∑
l,m

〈θ, φ|l,m〉〈l,m|θ′φ′〉

=
∑
l,m

Y m
l (θ, φ)(Y m

l (θ′, φ′))∗. (60)

Here,

δ2(Ω− Ω′) = δ(cos θ − cos θ′)δ(φ− φ′) =
δ(θ − θ′)

sin θ
δ(φ− φ′). (61)
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2.5 Examples

It is useful to look at a few examples:

Y 0
0 =

1√
4π
, (62)

Y ±1
1 = ∓

√
3

8π
sin θe±iφ, (63)

Y 0
1 =

√
3

4π
cos θ, (64)

Y ±2
2 =

√
15

32π
sin2 θe±2iφ, (65)

Y ±1
2 = ∓

√
15

8π
sin θ cos θe±iφ, (66)

Y 0
2 =

√
5

16π
(3 cos2 θ − 1). (67)

In spectroscopic symbols, l = 0, 1, 2, 3, 4, · · · correspond to s, p, d, f, g, · · ·
orbitals.†

In chemistry and solid-state physics, you see symbols like px, dx2−y2 . They
refer to certain linear combinations of spherical harmonics. The general rule
is to first multiply the spherical harmonics by rl, and you find

Y 0
0 =

1√
4π
, (68)

rY ±1
1 = ∓

√
3

8π
(x± iy), (69)

rY 0
1 =

√
3

4π
z, (70)

r2Y ±2
2 =

√
15

32π
(x± iy)2, (71)

r2Y ±1
2 = ∓

√
15

8π
(x± iy)z, (72)

r2Y 0
2 =

√
5

16π
(3z2 − r2). (73)

†s for sharp, p for principal, d for diffuse, f for fundamental, and the rest is just
alphabetical.
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Then you look at x, y, z dependences to identify a particular orbital. Note
that the dependence on r should not be taken seriously; it is supposed to
be multiplied by a radial wave function anyway. We multiplied spherical
harmonics by rl just to make to expressions become polynomials in x, y,
z. From these expressions, it is clear that the pz orbital corresponds to Y 0

1 ,
while px to (Y 1

1 + Y −1
1 )/

√
2 and py to (Y 1

1 − Y −1
1 )/i

√
2. dx2−y2 corresponds

to (Y 2
2 + Y −2

2 )/
√

2, dyz to (Y 1
2 − Y −1

2 )/i
√

2.
I’m sure you have seen “shapes” of spherical harmonics in textbooks. It

is important to understand what they actually are. In many cases, what is
shown is a surface given by points

r = |Y m
l (θ, φ)|2. (74)

In other words, the distance of the surface from the origin along a direction
is determined by the probability of finding the particle along that direction.
They actually do not represent the “shapes” of the wave function. They just
show along which direction the probability is big or small.

In certain cases, though, these plots do represent the “shapes” of the
actual wave function. Remember that the actual wave function has the radial
wave function on top of the spherical harmonics. Suppose the radial wave
function is a smoothly decaying function, say, e−r/a0 . Now you try to draw a
surface of constant probability density in three dimensions. Then along the
directions where |Y m

l |2 is larger, the constant probability is attained even at
higher r; but along the directions with small |Y m

l |2, you need to go closer
to the origin to get the same probability density. Then the plot mentioned
above can approximate the “shape” of the actual wave function. But if
you want to interpret the plots in this manner, it obviously depends on the
details of the radial wave function, and what value you chose for the surface of
constant probability density. Just presenting the “shapes” of, say, pz orbitals
independent of n (the principal quantum number) is therefore misleading.

2.6 Mathematica

It is useful to know that Mathematica has built-in commands for the spher-
ical harmonics SphericalHarmonicY[l,m,θ,φ] for Y m

l (θ, φ), the Legendre
polynomials LegendreP[n,x] for Pn(x), and the associated Legendre poly-
nomials LegendreP[n,m,x] for Pm

n (x).

13


	Oribtal Angular Momentum
	Spherical Harmonics
	Derivation of Spherical Harmonics
	Legendre Polynomials
	More Conventional Expression
	Orthonormality and Completeness
	Examples
	Mathematica


