Midterm Exam (221A), due Oct 22, 4pm

1. A particle of mass m is allowed to move only along the circle of radius R on a plane, $x=R \cos \theta, y=R \sin \theta \underbrace{*}[40]$
(a) Show that the Lagrangian is $L=\frac{m}{2} R^{2} \dot{\theta}^{2}$. Hereafter, θ is the generalized coordinate of this system. [5]
(b) Write down the canonical momentum p_{θ} and the Hamiltonian. [5]
(c) Write down the Heisenberg equation of motion, and solve them. (So far no representation was taken.) [5]
(d) Write down the normalized position-space wave function for the momentum eigenstates $p_{\theta}|k\rangle=k \hbar|k\rangle$, and show that only $k=n \in \mathbb{Z}$ are allowed because of the requirement that $\psi(\theta+2 \pi)=\psi(\theta)$. [5]
(e) Write down the Schrödinger equation in the position space, and that the following continuity equation for the probability holds

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial j_{\theta}}{\partial \theta}=0, \quad \rho=\psi^{*} \psi, \quad j_{\theta}=\frac{i \hbar}{2 m R^{2}}\left(\psi^{*} \frac{\partial \psi}{\partial \theta}-\frac{\partial \psi^{*}}{\partial \theta} \psi\right) \tag{1}
\end{equation*}
$$

Calculate ρ and j_{θ} for the state $|n\rangle$ and show that it has a constant flow of probability. [5]
(f) Show the orthonormality $\langle n \mid m\rangle=\delta_{n, m}$ explicitly in the position space. [5]
(g) Now we introduce a constant magnetic field B inside the radius $r<$ $d<R$ but no magnetic field outside $r>d$, so that the vector potential is

$$
\left(A_{x}, A_{y}\right)= \begin{cases}\frac{B}{2}(-y, x) & (r<d) \tag{2}\\ \frac{B}{2} \frac{d^{2}}{r^{2}}(-y, x) & (r>d)\end{cases}
$$

Write the Lagrangian, derive the Hamiltonian, and show that energy eigenvalues are indeed influenced by the magnetic field even though the particle does not "see" the magnetic field directly. [10]
2. Write down the Schrödinger equation in the presence of vector and scalar potentials. Show that there is a conserved probability current that satisfies Sakurai's (2.4.15), but its form is modified from that in (2.4.16). Further show that it is gauge invariant. [10]

[^0]3. Consider a charged particle on the $x-y$ plane in a constant magnetic field perpendicular to the plane $\vec{B}=(0,0, B)$ with the Hamiltonian ${ }^{\dagger}[40]$
\[

$$
\begin{equation*}
H=\frac{\Pi_{x}^{2}+\Pi_{y}^{2}}{2 m}, \quad \Pi_{i}=p_{i}-e A_{i} \tag{3}
\end{equation*}
$$

\]

(a) Show that $\left[\Pi_{x}, \Pi_{y}\right]=i e \hbar B$, and hence that the "annihilation" operator $a=\left(\Pi_{x}+i \Pi_{y}\right) / \sqrt{2 e \hbar B}$ satisfies the commutation relation $\left[a, a^{\dagger}\right]=1$.
(b) Rewrite the Hamiltonian using a and a^{\dagger}. [5]
(c) Use the so-called "symmetric gauge" $\vec{A}=\frac{B}{2}(-y, x)$. Write down the differential equation for the ground state wave function in the position representation. Show that it is satisfied for

$$
\begin{equation*}
\psi_{n}(z, \bar{z})=N z^{n} e^{-e B \bar{z} z / 4 \hbar} \tag{4}
\end{equation*}
$$

where $z=x+i y, \bar{z}=x-i y$, and n is an arbitrary integer. Therefore the ground state is not unique and is highly degenerate. Determine the normalization factor N. [5]
(d) Plot the probability density of the wave function for $n=0,3$, and 10 (use ContourPlot or Plot3D) on the same scale. [5]
(e) Assuming that the system is a circle of a finite radius R, show that there are only a finite number of ground states. Work out the number. [5]
(f) Show that the state

$$
\begin{equation*}
\psi(z, \bar{z})=N e^{-e B\left(z-z_{0}\right)\left(\bar{z}-\bar{z}_{0}\right) / 4 \hbar} \tag{5}
\end{equation*}
$$

can be regarded as a "coherent state," has the minimum uncertainty, and that it undergoes a near-classical cyclotron motion. [10]
(g) For an electron, what is the excitation energy under $B=100 \mathrm{kG}$? [5]
4. Read the article W.-T. Lee et al, "Observation of Scalar Ahoronov-Bohm Effect with Longitudinally Polarized Neutrons," Phys. Rev. Lett. 80, 3165 (1998), which realized the gedanken experiment Sakurai discusses in pp. 123125. Show that the expected $\Delta \Phi_{A B}$ in Eq. (3) depends on the magnetic field as is shown in Fig. 5. The magnetic moment of the neutron can be found from Particle Data Group at Lawrence Berkeley Laboratory. [10]

[^1]
[^0]: *This is a model of spacetime that has an extra spatial dimension curled up in small size. The energy levels in this problem would appear as the spectrum of masses (i.e., rest energies) of a so-called Kaluza-Klein tower of particles, in honor of people who first speculated about an extra spatial dimension to our universe to unify the gravity and the electromagnetism.

[^1]: ${ }^{\dagger}$ This is the setup to study the Fractional Quantum Hall Effect. GaAs provides a plane where an electron is confined in a potential well along the z-direction, and can move only in two dimensions. A strong magnetic field of more than 100 kG is then applied at temperatures below 1 K.

