
221A Lecture Notes
Notes on Classica Mechanics II

1 Hamilton–Jacobi Equations

The use of action does not stop in obtaining Euler–Lagrange equation in
classical mechanics. Instead of using the action to vary in order to obtain
the equation of motion, we can regard the action as a function of the end
point by using the solution to the equation of motion. This may sound like
an odd thing to do, but turns out to be another useful formulation of classical
mechanics.

1.1 Free Particle in One Dimension

Think about a free particle in one dimension for the moment. The Lagrangian
is simply L = m

2
ẋ2. For the initial position xi at time ti, and the final position

xf at time tf , the equation of motion can be easily solved and we find

x(t) = xi +
xf − xi

tf − ti
(t− ti). (1)

If you insert this solution to the action, we find

S(xf , tf ; xi, ti) =
m

2

(xf − xi)
2

tf − ti
. (2)

This expression is interesting, because it gives

∂S

∂xf

= m
xf − xi

tf − ti
= mv = p (3)

∂S

∂tf
= −m

2

(xf − xi)
2

(tf − ti)2
= −1

2
mv2 = −E. (4)

Here, p is the momentum and E the energy for this solution.
If we had known this point before hand, we could have written the fol-

lowing equation (Hamilton–Jacobi equation),

E = H(p, q) =
p2

2m
, (5)
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and hence
∂S

∂tf
+

1

2m

(
∂S

∂xf

)2

= 0. (6)

It is easy to see that the expression for the action obtained above is a solution
to this equation.

1.2 Hamilton–Jacobi Equation

In general, we can regard the action a function of the final position qi and
time t, keeping the intial data fixed. Then we can show

∂S

∂qi

= pi,
∂S

∂t
= −H. (7)

(Here, we already see the connection between the momentum and space-
derivative, and the energy and the time-derivative, hinting at what we do in
quantum mechanics.) Then one can write the Hamilton–Jacobi equation

∂S

∂t
+ H

(
∂S

∂q
, q

)
= 0 (8)

using the Hamiltonian H(p, q).
Here is how we see Eq. (7). First of all, when we change the end point of

the motion qi(tf ) to qi(tf )+δqi, the entire trajectory is changed to qi(t)+δqi(t)
with the boundary conditions δqi(ti) = 0, δqi(tf ) = δqi. Remember we
evaluate the action along the trajectory that satisifes the equation of motion.
The action changes by

δS =
∫ t+f

ti

(
∂L

∂qi

δqi +
∂L

∂q̇i

δq̇i

)
dt

=
∫ t+f

ti

(
d

dt

∂L

∂q̇i

δqi +
∂L

∂q̇i

δq̇i

)
dt

=

[
∂L

∂q̇i

δqi

]tf

ti

=
∂L

∂q̇i

(tf )δqi. (9)

In the second one we used the equation of motion. Therefore, we find

∂S

∂qi

= pi(tf ). (10)
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The variation with respect to tf needs to be done carefully. When we fix
the end point of the motion qi but change the arrival time tf to tf + δt, we
need to change qi(tf ) to qi(tf )− q̇iδt so that it arrives at the same qi at time
tf + δt. Therefore, there are two contributions to δS. One is just because of
the change in the end point of the time integral L(tf )δt, and the other due
to the change in qi(tf ), and hence

δS = L(tf )δt +
∂L

∂q̇i

(tf )(−q̇iδt) = −Hδt. (11)

This proves Eq. (7).
Why do we formulate the classical mechanics this way? Well, it turns out

that this is probably the easiest method to solve Kepler motion (or hydrogen
atom at the classical level). The point is that solving differential equation
in three-dimensional space is not easy. We of course know the answer to the
Kepler problem, but if you have tried to work out the elliptic orbit yourself,
you know it ain’t easy! The Hamilton–Jacobi method makes the mechanics
problem mechanical. If you can completely separate variables (you’ll see
below what I mean), the problem reduces to simple integrals. It helps a lot
that there are no second-order derivatives in the equation.

Skip this if you are not familiar with general relativity. When you solve for particle
trajectory in general relativity (in curved space-time), we would like the equation to be
invariant under general coordinate transformations. The Hamilton–Jacobi equation is
given by

gµν ∂S

∂xµ

∂S

∂xν
= m2c2, (12)

and is indeed fully invarant under general cooredinate transformations. This is another
useful application of Hamilton–Jacobi equation.

1.3 Harmonic Oscillator

Let us apply Hamilton–Jacobi method to a harmonic oscillator. Of course,
a harmonic oscillator can be easily solved using the conventional equation of
motion, but this excercise would be useful to understand the basic method.

From the Hamiltonian

H =
p2

2m
+

1

2
mω2q2, (13)

the Hamilton–Jacobi equation is written down as

∂S

∂t
+

1

2m

(
∂S

∂q

)2

+
1

2
mω2q2 = 0. (14)
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Because the equation does not explicit involve t, we can write

S(q, t) = S̃(q, E)− Et (15)

to obtain
1

2m

(
∂S̃

∂q

)2

+
1

2
mω2q2 = E. (16)

S̃ can be obtained easily from this equation

S̃ =
∫ √

2mE −m2ω2q2 dq =
E

ω

arcsin
mωq√
2mE

+
mωq√
2mE

√√√√1−
(

mωq√
2mE

)2
 .

(17)
Note that the change from S to S̃ can be viewed as a Legendre transform.
We will use the inverse Legendre transform to find the time-dependence of
the motion

t =
∂S̃

∂E
=

1

ω
arcsin

mωq√
2mE

. (18)

This is indeed what we want:

q =

√
2E

m
sin ωt. (19)

The momentum is given by

p =
∂S

∂q
=
√

2mE −m2ω2q2 (20)

as required.

1.4 Motion in a Central Potential

When a particle is moving in a central potential V (r), a function only of the
radius r, the Hamilton–Jacobi equation can be solved by using the spherical
coordinates. The Lagrangian is

L =
m

2
~̇x

2 − V (r). (21)

Going to the spherical coordinates, it becomes

L =
m

2
(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2)− V (r). (22)
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The canonical momenta are defined as

pr = mṙ, pθ = mr2θ̇, pφ = mr2 sin2 θφ̇. (23)

Following the definition, we find the Hamiltonian

H =
p2

r

2m
+

p2
θ

2mr2
+

p2
φ

2mr2 sin2 θ
+ V (r). (24)

Then the Hamilton–Jacobi equation is found to be

∂S

∂t
+

1

2m

(
∂S

∂r

)2

+
1

2mr2

(
∂S

∂θ

)2

+
1

2mr2 sin2 θ

(
∂S

∂φ

)2

+ V (r) = 0. (25)

It still looks complicated, but it can be drastically simplified using the so-
called separation of variables.

Separation of variables is done in the following simple manner:

S(t, r, θ, φ) = S1(t) + S2(r) + S3(θ) + S4(φ). (26)

Then the Hamilton–Jacobi equation becomes

dS1

dt
+

1

2m

(
dS2

dr

)2

+
1

2mr2

(
dS3

dθ

)2

+
1

2mr2 sin2 θ

(
dS4

dφ

)2

+ V (r) = 0. (27)

Because there are no explicit t- and φ-dependence in the equation, we con-
clude dS1/dt, dS4/dφ must be constant. We set

dS1

dt
= −E,

dS4

dφ
= Lz. (28)

They indeed have the meaning of the energy and the z-component of the
orbital angular momentum, as we will see later. Then

S2(r) + S3(θ) = S(t, r, θ, φ) + Et− Lzφ, (29)

a Legendre transformation from the original action S. The Hamilton–Jacobi
equation is now

1

2m

(
dS2

dr

)2

+
1

2mr2

(
dS3

dθ

)2

+
L2

z

2mr2 sin2 θ
+ V (r) = E. (30)
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θ-dependence is only in the second and third terms in the left-hand side of
the equation. Therefore, we must have the following combination constant,(

dS3

dθ

)2

+
L2

z

sin2 θ
= L2. (31)

Again L has the meaning of the orbital angular momentum, as can be seen
as follows. S3(θ) is obtained by integrating

dS3

dθ
=

√
L2 − L2

z

sin2 θ
. (32)

This equation makes it clear that L2 ≥ L2
z in order for a solution to exist.

Because the change from the original action S to S2+S3 Eq. (29) is a Legendre
transform, the inverse transform can be used to determine φ by a derivative
with respect to Lz. Note that S2 does not depend on Lz (see below, Eq. (36),
and hence the only Lz dependence appears in S3(θ). Therefore,

φ = −∂S3

∂Lz

= − ∂

∂Lz

∫ √
L2 − L2

z

sin2 θ
dθ

=
∫ 2Lzdθ√

L2 − L2
z

sin2 θ
sin2 θ

= − arctan
Lz cos θ√

L2 sin2 θ − L2
z

+ φ0. (33)

φ0 is an integration constant. This equation can be simplfied to

cos2 θ =
(L2 − L2

z) tan2(φ− φ0)

L2
z + L2 tan2(φ− φ0)

. (34)

As φ is varied from 0 to 2π, cos θ changes between ±
√

L2 − L2
z/L. When

Lz = L, the maximum possible value, cos θ = 0 and hence the motion is
confined in the xy plane. As Lz decreases, the orbit is no longer confined
in the xy plane, but still the polar angle varies uniquely as the azimuth is
varied: a closed orbit. The Lz → 0 limit is singular in this expression. The
azimuth φ is then restricted to φ0, while cos θ can change for the entire range
[−1, 1]. This behavior is exactly what we expect from closed orbits with fixed
angular momenta.

The Hamilton–Jacobi equation for the remaining radial piece is

1

2m

(
dS2

dr

)2

+
L2

2mr2
+ V (r) = E. (35)
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Writing it

dS2

dr
=

√
2mE − 2mV (r)− L2

r2
, (36)

the problem is reduced to a matter of an integral. Therefore, Hamilton–
Jacobi equation reduces the problem of three-dimensional motion down to a
single integral, a dramatic simplification. The time-dependence of the motion
is then obtained by the inverse Legendre transformation,

t =
∂S2

dE
=
∫ mdr√

2mE − 2mV (r)− L2

r2

. (37)

1.5 Kelper Motion

Let us apply the Hamilton–Jacobi equation to the Kepler motion. The only
difference from the general case studied in the previous section is that we
have a specific form of the potential

V (r) = −GMm

r
. (38)

Then the Hamilton–Jacobi equation remaining to be solved is

1

2m

(
dS2

dr

)2

+
L2

2mr2
− GMm

r
= E. (39)

Solving this equation is straight-forward. Writing it

dS2

dr
=

√
2mE +

2GMm2

r
− L2

r2
, (40)

even Mathematica can do this integral.
In fact, if what we want is the orbit, the integration is even simpler. Note

first that we can always choose the z-axis such that the Kepler motion is in
the x-y plane. Then sin θ = 1 and L = Lz. In this case, we find φ by

φ = −∂S2

∂L
= L

∫ dr

r
√

2mEr2 + 2GMm2r − L2
. (41)

The integral can be evaluated to be

φ = arccos
L2 −GMm2r

r
√

2mEL2 + G2M2m4
+ φ0. (42)
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Or even better,(
GMm2 +

√
G2M2m4 + 2mEL2 cos(φ− φ0)

)
r = L2. (43)

Compared to the general formula for conic sections r = ed/(1 − e cos θ) in
the polar coordinate, we find

e =

√
G2M2m4 + 2mEL2

GMm2
, (44)

d = L2 GMm2

√
G2M2m4 + 2mEL2

, (45)

by choosing φ0 = π. An ellipse (e < 1), a parabola (e = 1) and a hyperbola
(e > 1), is obtained depending on E < 0 (bound state), E = 0, and E > 0.1

1.6 Bohr-Sommerfeld Quantization Condition

It is interesting that this is the formalism with which Bohr and Sommerfeld
came up with their quantization condition. They required that the action
integral for a periodic motion must be integer multiples of h = 2πh̄ for each
degree of freedom.

Let us apply their condition to the motion in a central potential. First, the
requirement that

∮
dφ(dS(φ)/dφ) = 2πLz = 2πmlh̄ means the quantization

of the angular momentum Lz = mlh̄.
The next one is

S3 =
∮ √

L2 − L2
z

sin2 θ
dθ

= −2π(L− Lz). (46)

Then the quantization condition requires 2π(L − Lz) = π(L −mlh̄) = 2πm
for m ∈ Z, and hence L = h̄(m + ml) ∈ Z. We normally write L = lh̄.
Because of the requirement L2 ≥ L2

z, we also find l ≥ |m|.
A more complicated condition for S(r) =

∮
dr(dS/dr) for E = −|E| < 0

yields ∮
dr

dS2

dr
= 2

−Lπ +
Gm3/2Mπ√

2|E|

 = 2πn′h̄, (47)

1See http://mathworld.wolfram.com/ConicSection.html for an introduction to
conics.
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together with Lz = lh̄, leads to

E = − G2m3M2

2(n′ + l)2h̄2 , (48)

nothing but the energy levels of hydrogen-like atoms (replace GMm by Ze2).
Why does this ad-hoc condition work to yield the exact result? This

remains a mystery to this date. The WKB method shows that, in the limit
of large quantum numbers, the conditions are more like the action being
(n + 1

2
)h instead of nh. Of course for large n, the difference is negligible

and they are consistent. It was a pure luck that this result was exact, even
though it is supposed to be good for large quantum numbers. If you apply
the same requirement to the harmonic oscillator, you find the energy levels
to be nh̄ω without the zero-point energy.

A Some Integrals

This appendix is just mathematical technicalities on how to do some of the
integrals in this note.

The integral for the harmonic oscillator is done with the standard tech-
nique, to deal with a quadratic function in a square root.

S̃ =
∫ √

2mE −m2ω2q2 dq (49)

We look for the change of variable to make the terms inside the square root
to become 1 − sin2 θ = cos2 θ so that we can take the square root. Indeed,
by defining q = sin θ

√
2mE/mω, we find

S̃ =
∫ √

2mE − 2mE sin2 θ

√
2mE

mω
cos θdθ. (50)

Taking the square root (of course, depending on the region of θ, the sign may
be the opposite),

S̃ =
∫ √

2mE cos θ

√
2mE

mω
cos θdθ =

2E

ω

∫ 1 + cos 2θ

2
θ =

E

ω

(
θ +

1

2
sin 2θ

)
.

(51)
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The rest of the job is to rewrite θ in terms of q,

S̃ =
E

ω

arcsin
mωq√
2mE

+
mωq√
2mE

√√√√1−
(

mωq√
2mE

)2
 . (52)

One of the not-so-easy integrals is that for θ in Eq. (32). We need to
compute

S3(θ) =
∫ √

L2 − L2
z

sin2 θ
dθ =

∫ √
L2 − L2

z − L2 cos2 θ

sin θ
dθ. (53)

First, we change the variable to x = cos θ,

S3(θ) = −
∫ √

L2 − L2
z − L2x2

1− x2
dx. (54)

Then, to simplify the numerator, we make another change of variable x =√
L2−L2

z

L
sin φ just as in the harmonic oscillator case,

S3(θ) = −L2 − L2
z

L

∫ cos2 φ

1− L2−L2
z

L2 sin2 φ
dφ. (55)

This is now a rational function of trigonometric functions, which can always
be done analytically. The standard trick is to use the variable t = tan φ (this
works when the rational function depends only on even powers of trigono-
metric functions; otherwise you use t = tan(φ/2) instead) so that

cos2 φ =
1

1 + t2
, sin2 φ =

t2

1 + t2
, dφ =

dt

1 + t2
. (56)

Putting them together, we find

S3(θ) = −L2 − L2
z

L

∫ 1
1+t2

1− L2−L2
z

L2
t2

1+t2

dt

1 + t2
= −L(L2 − L2

z)

L2
z

∫ dt

(1 + t2)(L2

L2
z

+ t2)
.

(57)
Using the partial fraction decomposition,

S3(θ) = −L
∫  1

1 + t2
− 1

L2

L2
z

+ t2

 dt. (58)
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Both terms in the parentheses can be integrated with the standard formula,
and we find

S3(θ) = −L
(
arctan t− Lz

L
arctan

Lz

L
t
)

. (59)

The final job is to rewrite t in terms of the original variable θ. First going
back to φ,

S3(θ) = −L
(
φ− Lz

L
arctan

Lz

L
tan φ

)
. (60)

Now we try to relate φ to θ. Because x = cos θ =

√
L2−L2

z

L
sin φ, we find

cos θ =

√
1− L2 − L2

z

L2
sin2 φ =

√
L2 sin2 θ − L2

z√
L2 − L2

z

. (61)

Therefore,

tan φ =
L cos θ√

L2 sin2 θ − L2
z

. (62)

We finally obtain

S3(θ) = −L

arctan
L cos θ√

L2 sin2 θ − L2
z

− Lz

L
arctan

Lz cos θ√
L2 sin2 θ − L2

z


= −L arctan

L cos θ√
L2 sin2 θ − L2

z

+ Lz arctan
Lz cos θ√

L2 sin2 θ − L2
z

. (63)

You can let Mathematica check easily that the dS3/dθ is indeed
√

L2 − L2
z/ sin2 θ.

Note, however, that the integration constant can depend on L and Lz, which
can play the role of initial conditions. Also, dS3/dL in Eq. (33) calculated
by differentiating by L first and integrating over θ later, is obtained straight-
forwardly from the above expression, except that you need to allow the inte-
gration constant Lzφ0 to S3(θ).

Another use of Eq. (63) is the Bohr–Sommerfeld quantization condition.
By requiring that S3 for a period of the motion is an integer multiple of h,
we obtain quantization condition for L. A period is given by arctan changing
from π/2 to −π/2, and then back to π/2. Therefore, S3 for a period of the
motion is

S3 = −2πL + 2πLz. (64)
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Therefore, L− Lz must be an integer multiple of h̄. On the other hand, the
same condition for S4(φ) = 2πLz requires that Lz = mh̄, m ∈ Z. Therefore,
L itself must be an integer multiple of h̄, L = lh̄, l ∈ Z. This was the
argument by Bohr and Sommerfeld why angular momentum is quantized.

Finally, the integral for the Kepler motion is

S2(r) =
∫ √

2mE +
2GMm2

r
− L2

r2
dr =

∫ √
2mEr2 + 2GMm2r − L2

dr

r
.

(65)
If E < 0 for elliptic orbits, the terms in the square root can be rewritten as

S2(r) =
∫ √√√√G2M2m3

2|E|
− L2 − 2m|E|

(
r − GMm

2|E|

)2
dr

r
. (66)

Changing the variable to r′ = r − GMm
2|E| ,

S2(r) =
∫ √√√√G2M2m3

2|E|
− L2 − 2m|E|r′2 dr′

r′ + GMm
2|E|

. (67)

To open the square root, the next change of variable is

(2m|E|)1/2r′ =

(
G2M2m3

2|E|
− L2

)1/2

sin η. (68)

Then the integral becomes

S2(r) =

(
G2M2m3

2|E|
− L2

)1/2 ∫ cos2 ηdη

GMm
2|E| +

((
GMm
2|E|

)2
− L2

2m|E|

)1/2

sin η

. (69)

To integrate a rational function of η, we use the conventional change of
variable

t = tan
η

2
, cos η =

1− t2

1 + t2
, sin η =

2t

1 + t2
, dη =

2dt

1 + t2
. (70)

Then the t integral can be done after a partial fraction decomposition. We
find

S2(r) =

(
G2M2m3

2|E|
− L2

)1/2 (
a

b
η − 2

√
a2 − b2

b
arctan

b cos η
2

+ a sin η
2√

a2 − b2 cos η
2

+ cos η

)
,

(71)
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with

a =
GMm

2|E|
, b =

(GMm

2|E|

)2

− L2

2m|E|

1/2

. (72)

The integral for a period Eq. (47) is obtained by varying η from 0 to 2π.
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