HW \#8 (221A), due Nov 5, 4pm

1. Consider a three-dimensional isotropic harmonic oscillator with Hamiltonian

$$
H=\frac{\vec{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \vec{x}^{2} .
$$

(This is the starting point of the shell model of nuclei.) Answer the following questions.
(a) Clearly, the system is spherically symmetric, and hence there is a conserved angular momentum vector. Show that $\vec{L}=\vec{x} \times \vec{p}$ commutes with the Hamiltonian.
(b) Define three sets of creation and annihilation operators a_{i} and a_{i}^{\dagger} for $i=x, y, z$. Rewrite H and \vec{L} in terms of creation and annihilation operators.
(c) Show that $|0\rangle$ belongs to the $l=0$ representation.
(d) Show that the $N=1$ states, $|1,1, \pm 1\rangle=\mp\left(a_{x}^{\dagger} \pm i a_{y}^{\dagger}\right)|0\rangle / \sqrt{2}$ and $|1,1,0\rangle=a_{z}^{\dagger}|0\rangle$, form the $l=1$ representation. (Notation is $|N, l, m\rangle$.)
(e) Calculate the expectation values of the quadrupole moment $\langle 1 m|\left(3 z^{2}-\right.$ $\left.r^{2}\right)|1 m\rangle$ for $N=1, m=-1,0,1$ states, and verify the WignerEckart theorem.
(f) There are six possible states at $N=2$ level. Construct states $|2, l, m\rangle$ with definite $l=0,2$ and m.
(g) How many possible states are there at $N=3,4$ levels? What l representations do they fall into?
2. Two angular momenta j_{1} and j_{2} are added to j. Calculate the expectation values of $\langle j m|\left(\vec{J}_{1} \cdot \vec{J}_{2}\right)|j m\rangle$. (This is how you calculate the fine splittings in the presence of the spin-orbit interaction in the perturbation theory.)
3. Consider the Stern-Gerlach experiment for spin 1. When the atom enters with $J_{z}=+\hbar$ in the magnetic field along the y axis, determine the relative strengths of three lines that correspond to $J_{y}=+\hbar, 0,-\hbar$.

