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HW #8

1. 3D Harmonic Oscillator

(@)

2
r_1_ PPy . L ih _

[Li, 2| =€ jilx; pis BL-1 =€ i i 16, (pe pr + i + k) 5 = 2€i1k P1 Pr = =0,
1 27271 _ 1 2 _ . 1 2 _ —ih 2 _

[L,-, T MW" x ]—e,-jk[xjpk, 5 Mmw xlxl]—e,-jkxj(—lhékl)(xjxl+x1xj)7mw —2€ij1xjxlew =0.

In both cases, I used the anti-symmetry of the Levi-Civita symbol €; j .

(b)

We generalize the usual creation and annihilation operator for each spatial direction, a; = \/ % (x; +1 -2,

mw
a;t = 2% (x; —i -2-). The commutation relations are obviously [a;, @;'] = 6; ;. The Hamiltonian is simply the sum of
2h mw J J

three harmonic oscillator Hamiltonians, H = #iw(a,” a, + ay

f 3
ay+a' a; +3).

The angular momentum operators are rewritten using x; = 2;Zw (a; +a;"), pi=—i f“%‘“ (a; —a;"). We find
Li=¢€jxx;pr =€ ji T2 (a; +Clj+)(—l'\j b )(ak )

=—i % € jr(a; +aj+)(ak —ak%) =—i % €jk(a; ar — a; ap’t +aj+ a —af ak%)

=—i % €ia;" ay —ay" ay)=—iheja;’ a.

For later purposes, it is useful to define

a, = %(ax—iay),a_ = ;z(ax+iay)

Note [a,,a,T1=1,[a_,a_"]1=1,[a,,a_1=[as,a-T]1=[a,T,a_]=[a.",a_"]=0. Then the angular momentum opera-
tors can be further rewritten as
L.=L +iL,=-if(a," a;, - a," ay) +f(a," a, —a," a;)

=f(-(a, +ia,)a; +a; (@, +1a) =7 V2 (@7 a; +a." a )

L. =L,—-iL,= —ih(af a, —a,’ ay) ~t(a," ay —a," a,)
=@ ~ia))a, —aa —ia)) =hV2 (@-"a; +a. ar)
L =-ih(a,"a,~a," a)= _ih( ai'\/_;*' a;/%a; - a: +;+1 aﬁ+ ) =h(a,"a, —a " a).

Namely, a,* (a,)creates (annihilates) the excitation with L. = +#, while a_¥ (a_) creates (annihilates) one with L. = —#.

It is useful to note that the creation operators are spherical tensor operators, 7, D =g, 7, T,W = at, T W =g 1. To verify
this point:

(L, T+1(1)] = [h \/5 (a." a, +a."a), aﬁ] =0,

[L_, T, V] = [h \/5 (a-"a,+a."a,), aﬁ] =h \/5 a,"=h \/5 T,

[L_, To(l)] = [h \/5 (a_t a, +az+ a,), af] = h\/i a = h\/? T_1(1),
[L_

L ) T_l(l)] = [h \/5 (a—+ a "'az+ a+)’ a++] =0.
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The ground state is unique, and the only representation of angular momentum that can be formed by a single state is / = 0.

A more explicit way to show it is simply by acting
L.10)=%V2 (a." a, +a, a2)|0) =0,

L 10)=%V2 (a-Ta, +a, a,)|0)=0,

L 0=, "a, —a_Ta_)|0)=0.

(@)

Using the notation defined above, |1, 1, +1)=a,"|0).

First we show that | 1, 1, 1) cannot be raised:

L. 11,1, )=hV2 (a, a, +a, a_)a,"|0) =0.

Then by lowering this state,

L1, )=hV2("a +a,"a,)a,"|0)=0v2a"|0)=0V2|1,1,0).
Lowering this state once more,

L1, 1L,0=0V2 (@ e +aa)a’|0)=nV2at|0)=nV2 |1 1, -1).
Finally this state cannot be lowered

LI, L, -)=hV2 (@ a +a'a)at|0)=0.

Therefore, they form the / = 1 representation correctly.

(e)

We first rewrite the quadrupole moment operator in terms of creation and annihilation operators. We start with

P -
X = 5 @ +a’) ) ) )
h B3 . B
32-r2=22-22 -y =51 (2(a, +a,") —(a, +a,") —(a, +a,7))
h 12 a_—a a_-a,’ 2 a_+a a_f+a,’ 2
= 2(a,+a,") — =+ —) — (== + L )
me( (‘- ‘-) ( V2 V2 ) (\/21' _ Zi)

Because we will take the expectation values of this operator, we are only interested in the pieces with one creation and one
annihilation operators. The pieces with two creation or two annihilation operators do not give non-vanishing expectation
values. Therefore keeping only those terms,

322-12 2,Zw Q. a. +a.a.)—
%((a_ —Cl+)(a_+ _a++) +(Cl_+ _a++)(61_ —a+))— % ((a_ +Cl+)(a_+ +a++)+(a_+ +a++)(a_ +a+)))
B 212«» . a;" +a," a))—(a-a-"+a-"a_+a,a," +a," a,))
h T

QRa,"a,—(a_"a_ +a," a,)).

mw

In the last step, we used the commutation relation to rewrite aa’ = a' a + 1, and cancelled the constant pieces against each
other. Then it is easy to work out the expectation values,
(LL1B32 =2 1L1L D =0la 55 Qa a;~(a-Ta- +a." a)a, |0) =,

mw mw

(1,1,01322 =711, 1,0)=(0a, - 2a," a, —(a-Ta- +a," a,))a," |0y =2 2,

mw mw

A,1,-11322-7211,1,-1)=0]a. 2~ 2a, a, —(a_Ta_ +a," a,))a_"10)= -2

mw mow *

The quadrupole moment operator here is a spherical tensor operator with k =2, g =0. To see if this result is consistent with
the Wigner-Eckart theorem, we need the Clebsch-Gordan coefficients
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Table[ClebschGordan[{1l, m}, {2, 0}, {1, m}], {m, -1, 1}]

1 2 1
73 )

The ratios among the expectation values are indeed the same as the ratios among the Clebsch-Gordan coefficients, 1 : =2 : 1.

As an added note, a positive quadrupole moment (3 z> —*) > 0 indicates a prolate form, while a negative quadrupole
moment (3 z2 — r*) < 0 indicates an oblated form. This is consistent with the pictures obtained in HW#7.

(7)

The six states are: (a, ) |O , (af)2 |O , (@Y |O ,a,7a,710),a,7a_"10),a." a_"|0). By looking at the L, eigenval-
ues, it is easy to identify
12,2, 2) = - (@)’ |0),
12,2, 1 =a++az+ |0),
12,2, -1)=a,"a_"]0),

_ 1 12
12.2,-2)= 5 @-""|0). 2
There are two states with m = 0: (a,") | 0),a,"a_"|0). We can tell which linear combination belongs to [ = 2 representa-
tion by acting L_ on |2, 2, 1),
Lo12,2,)=hV2(ata,+a a)a"a |0)=0V2 (@t a. +a,"a.")|0)=11V6 |2,2,0).
Therefore, we can identify

1 ot ot

12.2,0) = = (a-"a." +a a; )| o
which is properly normalized as it should be. The orthogonal combination is
[2,0,0) = Lﬁ 2a-Ta,"-a,"a"]0).
To verify that this state is indeed an / = 2 state, we can check
L,1]12,0,0) = h\/2 (a,"a,+a,"a_) \/;g Qa_Ta," —a,’ az+)|0 = h\/? % (~a,"a," —a,"a,"+2a,"a, ") |O =0

A much more systematic way of obtaining the same result is to use Sakurai's Eq. (3.10.27). Even though this example is
simple enough to work it out explicitly as I did above, the generalization to higher N would be quite cumbersome.

Eq. (3.10.27) says
T, = qu a2 (11:q1,92120) Ty, @ qu(l)

=1L+l =1120T P 7, Y+ 1;00200 T,V o0 +(11; -1 +1]2007_, P 7,V
-1 T T [2 %, 1 Tt
—Wa_'_ a_' + 3 a;' a; +Wa_ a,

= \/% (a-"a," +a,"a.").

Therefore, the operator (a_" a, T +a." a.") creates an [ = 2 state. Similarly,

7Y =%, . 1q,q1007, "1,

=1L+l =100 TP 7,V +11;0000 T,V 7,V +11;-1 +1]100)7_, P T,V
1t t_ L it '

+Ltata,

=—a,'a." - —a." a. —

N N V3

1 + + + + 1 + + + . . - 1 ST
=W(2a_’a+’ —az’az’)z—\/—g(ax’ax’ +a," a,’ +az’az’)=—ﬁa -a .

The last expression shows it is manifestly rotation invariant. Therefore, the operator 2a_" a,” —a," a.") creates an [ =0
state. The rest of the job is to properly normalize the states, reproducing the above results.
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(9)

For N = 3. The number of states is given by the number of combinations to choose three out of three, allowing for multiple
picks. Using the general formula , H, =,.,—1 C,, 3 H3 =5 C3 = 10. It is clear that the state with the highest L, eigenvalue
(aﬁ)3 |O has m = 3 and hence belongs to the / = 3 representation, and it has 2/ + 1 = 7 states. The remaining 10 -7 =3
states then must form the / = 1 representation.

For N = 4. The number of states is given by the number of combinations to choose three out of four, allowing for multiple
picks. Using the general formula , H, =,.,—1 C,, 3 Hy =¢ C4 = 15. It is clear that the state with the highest L, eigenvalue
(aj)4 |O has m = 4 and hence belongs to the / = 4 representation, and it has 2/ + 1 = 9 states. The remaining 15 -9 =6
states then must form the / = 2 and [ = O representations.

Note that the creation operators are linear combinations of x and ;7 and hence parity odd. Therefore, N = even states have
even parity, and hence can only have even /, while N = odd states odd parity, and hence odd /. In general, N = even states
have [ =0, 2, - -, N, while N = odd states have [ =1, 3, - -, N. It can be verified by looking at the number of states.
The number of states at level N is sHy =y,0 Cy =(N+2)(N+1)/2. Foreven N =2k, itis (k+1)(2k+1). Eachl=2n
contributes 2/+ 1 =4n+1 states, and the total is Zﬁ:o @Gn+1)=2ktk+1)+*k+1)=(k+1)2k+1). For odd

N =2k -1, the number of states is k(2k+ 1). Each [=2n—1 contributes 2/+1=4n—1 states, and the total is
S @n—-1)=2k(k+1)—k=kQk+1).

2. Inner product of angular momentum operators

2

- - - - 5 2 5 2
Note that J, -J, = % ((] L+ Jz) -J -/ ] In our case, we know that the states of our interest have eigenvalues

2 2 L 52 42

Ji =8 ji(i +1),Jy =#% j>(j» +1). The total angular momentum is j, and hence (J1 + Jz) =J =#*j(j+1). There-

fore, J1 - Jy = 5 R2(j(j+ D) = jiGh + 1) = j2(Ga + 1)).

It is instructive to verify that Tr(] 1 J 2) =TrJ;-TrJ, = 0. In this definition of the trace on the left-hand side, it needs to
include the entire Hilbert space j=|j; —j2 |, |j1i —j2|+1, -+, ji +j». For the sake of definiteness, we can always
choose j; > j, without a loss of generality. Then, Tr(.h ~Jz) = Zj;;{ijz Q2j+1 % GG+ D= jiGr + 1) = ja(ja + 1)).

Sum[ (23 +1) J (3 +21), {3, F1 -T2, J1 +32}]

(1+23:) (1+23,) (j1+j§+jz+j§)

sum[ (23 +1), {j, J» -JF2, J1 +3F2}]

1+23,+231 (1+273,)

Simplify[Expand[%% - % (j1 (J1 +1) +3J2 (J2+1))]]

0

Therefore, Tr(] 1-J 2) = 0 as expected.
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3. Stern-Gerlach Experiment

One way is to find the eigenstates of J,in the J.-representation. Starting with the expression we found in
HW#7,

0 \/5 0 0 0 0
c=hlo o 3 |J-=H V2 0 0f
0 0 O 0 V2 0
we find
0 -i 0
Jy_’gj:h%[i 0 —z]
0 i O

The eigenstates can be obtained by

1
Eigensystem[— {{o, -1, 0}, {1, 0, -1}, {0, I, 0}}]
vz

{({-1, 0,1}, {{-1,i~2,1}, {1, 0,1}, {-1, -i~/2, 1}}}

The properly normalized J, eigenstates are therefore

-1 1 -1
ST P T[O] == | i |

1 1 1
The initial state

1
|J, =+ =[o]
0

can then be expanded as
|J,=+h) = |J,=+){Jy, =+h|J, =+) +|J, =0){J, =0|J, =+) +|Jy =) {(J, = | J, = +h)

=-h
The probabilities to find J, = +%, 0, —# are therefore % , % , and % , respectively, and hence the relative strengths of three
lines are 1:2:1.

1 1 1
=-7 )y =+7 +W|Jy=0 _7|Jy

Another way to obtain the same result is to use the rotation matrices in Sakurai (3.5.57). To rotate the J, eigenstates to J,
eigenstates, we need to rotate the system around the x-axis by 7/2. Using the Euler rotations, it is achieved by 7/2 around
the z-axis, /2 rotation around the y-axis, and rotating back by /2 around the z-axis. Therefore the matrix is

1

1 1

In[48]:= {{; (1+Cos[B]), - Sin[B], Py (1-COS[/3])}, { Ssin[B], Cos[B], - Sin[B]},
2 2

1 1 T

{= (1-cos[B]), sin[B], — (1+cos[B1)}} /. {B~-=}

2 > 2 2

101 1 1 1 1 1 1
Out[48]= {{7! \/—5r 7}: {—W, 0, \/—E}r {?,_W, 7}}

In[49]:= DiagonalMatrix[{E*™?, 1, E'™?}].%.DiagonalMatrix[{E'™/?, 1, ET™?}]

owets91= ({31 —J o gh b 0 g ) gy 7))

V' z
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In[50]:= % // MatrixForm

Out[50]//MatrixForm=
1 _ i -1
2 2 2
i i
7w 0 -7
1 1 1
7 Tz 7
L _ i 1
2 NG -7
Up to overall phase factors, the three column vectors | — \/% , 0o |, |- \/15 precisely agree with the eigenstates of
1 - 1
) V2 2

J, obtained above.



