HW #7 (221A), due Oct 29, 4pm

- 1. For a free particle $H = \frac{\vec{p}^2}{2m}$, show that all \vec{p} and \vec{L} are conserved. What symmetries are behind these six conservation laws?
- 2. For a particle in a potential that depends only on z, $H = \frac{\vec{p}^2}{2m} + V(z)$, what are the remaining symmetries of the system, and the corresponding conservation laws? Show that they are indeed conserved using the Heisenberg equation of motion.
- 3. Write down the representation matrices for J_z , J_+ , J_- for j = 1, 5/2, 4, 9/2, and verify their commutation relations $[J_z, J_{\pm}] = \pm \hbar J_{\pm}, [J_+, J_-] = 2\hbar J_z$.
- 4. Verify $L_{+}Y_{l}^{l} = 0$ and $L_{-}Y_{l}^{m} = \sqrt{(l+m)(l-m+1)} Y_{l}^{m-1}$ for all m when l = 2.
- 5. Plot the "shape" of spherical harmonics for z, x + iy, $x^2 y^2$, yz, $x^2 + y^2 2z^2$, $(x + iy)^3$, $x^3 3xy^2$, $z(x^2 y^2)$, $(5z^2 3r^2)z$ orbitals as defined in the class.