HW \#3 (221A), due Sep 17, 4pm

1. Answer the following questions about the spin operators using their matrix representation.
(a) Show the commutation relations $\left[S_{i}, S_{j}\right]=i \hbar \epsilon_{i j k} S_{k}$.
(b) Construct the eigenstates of the spin operator along an arbitrary axis $\vec{n}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$, and calculate the probability that the state with spin along the \vec{n} direction would be measured to have the positive spin along the z-axis.
(c) Generalize the result to the spin along the \vec{n} direction measured along the \vec{n}^{\prime} direction, and show that the result depends only on the angle between \vec{n} and \vec{n}^{\prime} as expected from the rotational invariance.
2. Here is a sloppy way to estimate the energy of the hydrogen atom using the uncertainty principle. Using the energy

$$
\begin{equation*}
E=\frac{\vec{p}^{2}}{2 m}-\frac{Z e^{2}}{r}, \tag{1}
\end{equation*}
$$

and assuming that the "size" (Δx) of the wave function is approximately d, the typical order of magnitude of the momentum is given by $p=\Delta p \simeq \hbar / d$. (Here I assumed that the momentum distribution is peaked at zero symmetrically, so that I can equate p and Δp). The typical size of the potential energy is then $Z e^{2} / d$. Minimize the energy with respect to d and find the "ground state energy." Compare the estimate to the exact result.
3. The uncertainty relation is actually there in classical waves, too.
(a) Show that a "localized light" of the form

$$
\begin{equation*}
E_{y}(x, t)=E_{0} \sin 2 \pi \nu\left(t-\frac{x}{c}\right) e^{-(x-c t)^{2} / 2 \sigma^{2}} \tag{2}
\end{equation*}
$$

is a solution to the (one-dimensional) Maxwell equation. Sketch its shape. Calculate the "uncertainty" in the position Δx.
(b) Using Fourier analysis, determine the frequency of the light and its dispersion $\Delta \nu$. What is the product $\Delta x \Delta \nu$?

