HW \#1

1. Free-particle Schrödinger Equation

(1) Plane wave $\psi=e^{i k z}$ does not depend on x or y. Therefore, the Schrödinger equation becomes $\left(\partial_{z}{ }^{2}+k^{2}\right) \psi=0$. Obviously this is a solution to the equation.

$$
D\left[E^{I k z},\{z, 2\}\right]+k^{2} E^{I k z}
$$

0
(2) In polar coordinates, the Laplacian can be rewritten as $\vec{\nabla}^{2}=\partial_{r}{ }^{2}+\frac{2}{r} \partial_{r}+\frac{1}{r^{2}} \partial_{\theta}{ }^{2}+\frac{\cos \theta}{r^{2} \sin \theta} \partial_{\theta}+\frac{1}{r^{2} \sin ^{2} \theta} \partial_{\phi}{ }^{2}$. The spherical wave $\psi=\frac{e^{i k r}}{r}$ does not depend on θ or ϕ. Therefore, the Schrödinger equation becomes $\left(\partial_{r}^{2}+\frac{2}{r} \partial_{r}+k^{2}\right) \psi=0$.

$$
\begin{aligned}
& \mathbf{D}\left[\frac{\mathbf{E}^{\mathrm{Ikr}}}{\mathbf{r}},\{\mathbf{r}, 2\}\right]+\frac{\mathbf{2}}{\mathbf{r}} \mathbf{D}\left[\frac{\mathbf{E}^{\mathrm{Ikr}}}{\mathbf{r}}, \mathbf{r}\right]+\mathbf{k}^{2} \frac{\mathbf{E}^{\mathrm{Ikr}}}{\mathbf{r}} \\
& \frac{2 e^{i k r}}{r^{3}}-\frac{2 i e^{i k r} k}{r^{2}}+\frac{2\left(-\frac{e^{i k r}}{r^{2}}+\frac{i e^{i k r} k}{r}\right)}{r}
\end{aligned}
$$

Simplify[\%]
0

2. Double Pin-hole Experiment

(1) As directed, we assume that the denominators are approximately the same between two waves. This is justified because the corrections are only of the order of d / L, and we are interested in the case where $d \ll L$. We require that the numerators have the same phase, namely $k r_{+}-k r_{-}=2 \pi n$. We expand the l.h.s. with respect to d,

$$
\begin{aligned}
& \operatorname{Series}\left[\operatorname{Sqrt}\left[\mathrm{x}^{2}+\left(\mathrm{y}+\frac{\mathrm{d}}{2}\right)^{2}+\mathrm{L}^{2}\right],\{\mathrm{d}, 0,1\}\right] \\
& \sqrt{L^{2}+X^{2}+y^{2}}+\frac{y d}{2 \sqrt{L^{2}+X^{2}+y^{2}}}+O[d]^{2} \\
& \text { Series }\left[\operatorname{Sqrt}\left[\mathrm{x}^{2}+\left(\mathrm{y}-\frac{\mathrm{d}}{2}\right)^{2}+\mathrm{L}^{2}\right],\{\mathrm{d}, 0,1\}\right] \\
& \sqrt{L^{2}+x^{2}+y^{2}}-\frac{y d}{2 \sqrt{L^{2}+x^{2}+y^{2}}}+O[d]^{2} \\
& \text { Simplify [Normal [\%\%-\%]] } \\
& \frac{d y}{\sqrt{L^{2}+x^{2}+y^{2}}}
\end{aligned}
$$

Therefore, $k \frac{d y}{\sqrt{L^{2}+x^{2}+y^{2}}}=2 \pi n$ and hence $\frac{y}{\sqrt{L^{2}+x^{2}+y^{2}}}=n \frac{\lambda}{d}$,
(2) Let us choose the unit where $k=1$. Then we pick $d=20, L=1000$. Here is the interference pattern. First along the y axis $(x=0)$:

$$
\begin{gathered}
\operatorname{Plot}\left[\operatorname{Abs}\left[\frac{E^{\mathrm{I} r_{+}}}{r_{+}}+\frac{E^{\mathrm{I} r_{-}}}{r_{-}}\right]^{2} / .\left\{r_{+}->\sqrt{x^{2}+\left(y-\frac{d}{2}\right)^{2}+L^{2}}, r_{-}->\sqrt{x^{2}+\left(y+\frac{d}{2}\right)^{2}+L^{2}}\right\} /\right. \\
\{d \rightarrow 20, L \rightarrow 1000\} / .\{x \rightarrow 0\},\{Y,-3000,3000\}, \text { PlotPoints } \rightarrow 100]
\end{gathered}
$$

- Graphics -
(3) Now on the plane:

ContourPlot $\left[\operatorname{Abs}\left[\frac{E^{I r_{+}}}{r_{+}}+\frac{E^{I r_{-}}}{r_{-}}\right]^{2} / \cdot\left\{r_{+}->\sqrt{X^{2}+\left(Y-\frac{d}{2}\right)^{2}+L^{2}}, r_{-}->\sqrt{X^{2}+\left(Y+\frac{d}{2}\right)^{2}}+L^{2}\right\} /\right.$. $\{d \rightarrow \mathbf{2 0}, \mathrm{~L} \rightarrow \mathbf{1 0 0 0}\},\{\mathrm{x}, \mathbf{- 5 0 0 0}, 5000\},\{\mathrm{y}, \mathbf{- 5 0 0 0}, 5000\}$, PlotPoints \rightarrow 100 $]$

- ContourGraphics -
(4) For the same parameters as in (2), First along the y-axis $(x=0)$:

Now on the plane:

- ContourGraphics -

The main difference is the absence of the interference pattern.

