HW \#10 (221A), due Nov 19, 4pm

1. We would like to find the ground-state wave function of a particle in the potential $V=50\left(e^{-x}-1\right)^{2}$ with $m=1, \hbar=1$. In this case, The true groundstate energy is known to be $E_{0}=39 / 8$. Plot the form of the potential. Find a variational wave function that comes within 5% of the true energy.
2. Neutrinos oscillate via the Hamiltonian,

$$
\begin{equation*}
H=\sqrt{c^{2} \vec{p}^{2}+m^{2} c^{4}} \simeq c|\vec{p}|+\frac{m^{2} c^{3}}{2|\vec{p}|} \tag{1}
\end{equation*}
$$

where the m^{2} is a three-by-three matrix

$$
\begin{equation*}
m^{2}=U D U^{\dagger}, \quad D=\operatorname{diag}\left(m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right) \tag{2}
\end{equation*}
$$

We parameterize the unitarity matrix U with four parameters $\theta_{12}, \theta_{13}, \theta_{23}$, and δ as

$$
U=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{3}\\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

where other five unimportant phases are already dropped. We ignore the spin degrees of freedom. The notation is $s_{12}=\sin \theta_{12}, c_{23}=\cos \theta_{23}$, etc. Three species of neutrinos are represented by

$$
\left|\nu_{e}(\vec{p})\right\rangle=\left(\begin{array}{l}
1 \tag{4}\\
0 \\
0
\end{array}\right) \otimes|\vec{p}\rangle, \quad\left|\nu_{\mu}(\vec{p})\right\rangle=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \otimes|\vec{p}\rangle, \quad\left|\nu_{\tau}(\vec{p})\right\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \otimes|\vec{p}\rangle
$$

(a) First consider the two-by-two case, by taking the limit $\theta_{12}=\theta_{13}=0$. Show that the survival probability is

$$
\begin{equation*}
\left.P\left(\nu_{\mu} \rightarrow \nu_{\mu}, t\right)=\left|\left\langle\nu_{\mu}\right| e^{-i H t / \hbar}\right| \nu_{\mu}\right\rangle\left.\right|^{2}=1-\sin ^{2} 2 \theta_{23} \sin ^{2} \frac{\left(m_{3}^{2}-m_{2}^{2}\right) c^{3} t}{4 \hbar|\vec{p}|} \tag{5}
\end{equation*}
$$

(b) For $|\vec{p}|=1 \mathrm{GeV} / c$, and $m_{3}^{2}-m_{2}^{2}=2.5 \times 10^{-3} \mathrm{eV}^{2} / c^{4}$, plot the survival probability as a function of the flight distance $L=c t$ so that the oscillatory behavior can be seen.
(c) Consider full three states, and show that $P\left(\nu_{\mu} \rightarrow \nu_{e}\right) \neq P\left(\nu_{e} \rightarrow \nu_{\mu}\right)$ if $\delta \neq 0$.
(d) Show that the time-reversal invariance would predict $P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=$ $P\left(\nu_{e} \rightarrow \nu_{\mu}\right)$, and hence $\delta \neq 0$ violates the time reversal invariance.

