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The structure of the nucleon

Elastic and deep inelastic scattering from nucleons, 1956–1973

Hadronic scattering experiments produced extensive and rich data revealing reso-
nances and regularities of cross sections. While the quark model provided a firm
basis for classifying the particles and resonances, the scattering cross sections were
less easily interpreted. The early studies of strong interactions indicated that the
couplings of the particles were large. This precluded the straightforward use of
perturbation theory. While alternative approaches have yielded some important
results, it is still true that even processes as basic as elastic proton–proton scat-
tering are beyond our ability to explain in detail. In contradistinction, scattering
of electrons by protons and neutrons is open to direct interpretation.

For the scattering of an electron by a proton it is a good approximation to
assume that the interaction is due to the exchange of a single virtual photon.
The small corrections to this approximation may be calculated if necessary. Each
coupling of the photon gives a factor of e in the scattering amplitude, so a virtual
photon’s two couplings typically provides a factor α = e2/4π ≈ 1/137. It is this
small number that makes the approximation a good one.

The scattering of relativistic electrons (E >> me) by a known charge distribu-
tion can be calculated using the standard methods of quantum mechanics. If the
electron were spinless and scattered from a static point charge, the cross section
would be given by the Rutherford formula:

dσ

dΩ
=

α2

4E2 sin4 1
2θ

where E is the energy of the incident relativistic electron and θ is its scattering
angle in the laboratory. Taking into account the electron’s spin gives the Mott
cross section:

dσ

dΩ
=

α2 cos2 1
2θ

4E2 sin4 1

2θ
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If the electron is scattered by a static source, its final energy, E ′, is the
same as the incident energy E, and the four-momentum transfer squared is q2 =
−4E2 sin2 1

2θ. If the target has finite mass, M , and thus recoils, then for elastic
scattering

E′ =
E

1 + 2E
M sin2 1

2θ
,

q2 = −4EE′ sin2 1
2θ.

The elastic scattering of an electron by a pointlike Dirac particle of mass M has a
cross section

dσ

dΩ
=

α2 cos2 1
2θ

4E2 sin4 1
2θ

· E
′

E

[

1 − q2

2M2
tan2 1

2θ

]

which reduces to the Mott cross section as the target mass increases.

These simple results do not apply if the charge distribution of the target has
some spatial extent. In the case of elastic scattering from a fixed charge distribu-
tion, ρ(r), the scattering amplitude is modified by a form factor

F (q2) =

∫

d3reiq·rρ(r)

so the Rutherford or Mott cross section would be multiplied by the factor |F (q2)|2.
Since

∫

d3rρ(r) = 1, the form factor reduces to unity for zero momentum transfer.
A relativistic treatment of the scattering of electrons by protons is obtained by

writing the scattering amplitude as a product of three factors:

M =
4πα

q2
Jelectronµ (q)Jµ proton(q)

where q is the four-momentum exchanged between the electron and the proton.
The factor 1/q2 arises from the exchange of the virtual photon between the two.
The current due to the electron is

Jelectronµ = u(kf)γµu(ki)

where ki and kf are the initial and final electron momenta and u and u are Dirac
spinors as described in Chapter 6. The electromagnetic current for the proton
involves two form factors,

Jprotonµ = u(pf)

[

F1(q
2)γµ + i

qνσµνκ

2M
F2(q

2)

]

u(pi)

Here pi and pf are the initial and final proton momenta and q = ki − kf = pf − pi

is the four-momentum transfer. The second term, proportional to the form factor



F2(q
2), is the anomalous magnetic moment coupling and κ = 1.79 is the anomalous

magnetic moment of the proton in units of the nuclear magneton, eh̄/(2Mc). The
form factors, F1(q

2) and F2(q
2), are the analogs of F (q2) in the discussion above,

and F1(0) = F2(0) = 1. If the proton were a pointlike Dirac particle like the
electron, we would have instead F1(q

2) = 1 and κF2(q
2) = 0. For a neutron, since

the total charge is zero, F1(0) = 0. The value of κ for the neutron is −1.91.
From these currents the differential cross section for elastic electron–proton

scattering can be calculated in terms of the form factors. The result is known as
the Rosenbluth formula:

dσ

dΩ
=

α2 cos2 1
2θ

4E2 sin4 1
2θ

· E
′

E
·
[(

F 2
1 +

κ2Q2

4M2
F 2

2

)

+
Q2

2M2
(F1 + κF2)

2 tan2 1

2θ

]

where θ is the scattering angle of the electron in the laboratory and E is its initial
energy. We have written Q2 for −q2, so Q2 is positive.

The Rosenbluth formula follows from the assumption that a single photon is
exchanged between the electron and the proton. All of our ignorance is subsumed in
the two form factors, F1(Q

2) and F2(Q
2). The formula can be tested by multiplying

the observed cross section by (E3/E′) sin2 1
2θ tan2 1

2θ and plotting the result at fixed
Q2 as a function of tan2 1

2θ. The result should be a straight line.
Elastic electron-proton scattering was measured by McAllister and Hofstadter

using 188 MeV electrons (Ref. 8.1) produced by a linear accelerator at Stanford.
The electrons scattered from a hydrogen target into a spectrometer that could be
rotated around the interaction region.

The experiment was able to determine the root-mean-square charge radius of
the proton by measuring the form factors at low momentum transfer. In this
region, we can expand

F (q2) =

∫

d3rρ(r) exp(iq · r)

=

∫

d3rρ(r)[1 + iq · r− (1/2)(q · r)2 · · ·]

= 1 − q2

6
< r2 > · · ·

Assuming the same < r2 > applied to both form factors, McAllister and Hofstadter
found < r2 >1/2= 0.74 ± 0.24 fm.

Form factors exist as well for excitation processes like ep → e∆(1232). The
number of form factors depends on the initial and final spins. The form factors
are expected generally to decrease with momentum transfer, reflecting the spread
in the charge and current distributions of the initial and final particles.

In the late 1960s, under the leadership of “Pief” Panofsky, the Stanford Linear
Accelerator Center, SLAC, opened a vast new energy domain for exploration. The
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Figure 8.27: The kinematics of deep inelastic lepton–nucleon scattering. The incident
lepton and proton have four-momenta k and P , respectively. The scattered lepton has
four-momentum k′ = k − q. The mass squared of the produced hadronic system is W 2 =
(P + q)2. The fundamental variables are Q2 = −q2 = 4EE′ sin2 1

2θ and ν = E−E′, where
E and E′ are the initial and final lepton energies in the lab, and θ is the lab scattering
angle of the lepton. The mass of the nucleon is M so q · P = (k − k′) · P = Mν, and
W 2 = M2 + 2Mν −Q2.

two-mile long accelerator produced electrons with energies up to about 18 GeV.
The scattered electrons were detected and measured by very large magnetic spec-
trometers. At these high energies, much of the scattering was inelastic, typically
ep → epππ... or ep → enππ.... When the scattering is not elastic, the energy
and direction of the scattered electron are independent variables, unlike the elas-
tic scattering situation. From careful measurements of the direction, specified by
a solid angle element dΩ, and the energy E ′ of the scattered electron, the four-
momentum transfer can be calculated. In this way, the differential cross section,
dσ/dΩdE′ is determined as a function of E ′ and Q2. The outgoing hadrons were
generally not detected. The kinematics are shown in Figure 8.27.

A SLAC-MIT group (Ref. 8.2) scattered electrons from a hydrogen target
and detecting the outgoing electrons in a large magnetic spectrometer set at angles
θ = 6◦ and 10◦. The scattered electrons’ momenta were measured to 0.1%, and
the spectrometer accepted a momentum interval ∆p/p = 3.5%. The potential
background produced by charged pions entering the spectrometers was suppressed
by observing the electron showers.

As expected, the data showed peaks when the massW of the produced hadronic
system corresponded to the mass of the one of the resonances in the sequence



N∗ (I = 1/2 nonstrange baryons) or ∆ (I = 3/2 nonstrange baryons). Each
resonance showed the expected behavior as a function of Q2. The production fell
with increasing momentum transfer. What was surprising was that for W values
beyond the resonances, the cross section did not fall with increasing Q2.

Just as it is possible to write down a most general expression for the electro-
magnetic current of a proton for elastic scattering, it is possible to write down a
general expression for the differential cross section measured in inelastic electron
scattering when only the electron is measured in the final state. This expression
depends on two functions, W1 and W2. These structure functions depend on two
variables, ν, the energy lost by the electron in the laboratory, and Q2. The full
expression for the differential cross section is

dσ

dΩdE′
=

α2

4E2

cos2 1
2θ

sin4 1
2θ

[

W2 + 2W1 tan2 1
2θ
]

This expression contains the Mott cross section as a factor and is analogous to
the Rosenbluth formula. It follows from the assumption of single photon exchange
and isolates the unknown physics in two functions, W1 and W2. Here, however,
these are functions of two variables, ν and Q2, not just one. In contrast, for elastic
scattering, (P + q)2 = M2 so the two variables are not independent but rather are
related by Q2 = 2Mν.

To determine W1 and W2 separately it is necessary to measure the differential
cross section at two values of E ′ and θ that correspond to the same values of ν
and Q2. This is possible by varying the incident energy, E. At small values of θ,
W2 dominates, so it is most convenient to focus on this quantity.

The most important result of the experiment at SLAC was the discovery that
νW2 did not fall with increasing Q2, but instead tended to a value that depended
on the single variable ω = 2Mν/Q2 (Ref. 8.3). This behavior, termed “scaling”,
had been anticipated first by Bjorken on the basis of a very complex study. By
1967, Bjorken was examining deep inelastic scattering by imagining the nucleon
to be composed of pointlike quarks.

In an independent effort, Feynman had concluded from his analysis of hadronic
collisions, that the proton ought to be composed of pointlike constituents, “par-
tons” he called them. They shared the total momentum of the proton by taking
up variable fractions, x, of that momentum. The probability of a parton carry-
ing a fraction between x and x + dx was written f(x)dx. The essential feature
was that the function f(x) was not to depend on the process at hand nor the
energy of the proton, but was intrinsic to the proton so long as the proton had a
large momentum. It was natural to assume that the partons were, in fact, quarks.
There would not be just three quarks in a proton because in addition there could
be many quark–antiquark pairs. The distribution functions for the various quarks
were indicated by u(x), d(x), u(x), etc. Since the momenta had to add up to the
proton’s momentum, there was a constraint



∫

dx x[u(x) + u(x) + d(x) + d(x)...] = 1

As we shall see later, there is also a contribution from the uncharged constituents
in the nucleon. In order for the quantum numbers of the proton to come out
correctly, other conditions had to be satisfied:

∫

dx[u(x) − u(x)] = 2

∫

dx[d(x) − d(x)] = 1

∫

dx[s(x) − s(x)] = 0

These replaced the statement that the proton was composed of two u quarks and
a d quark. Thus in Feynman’s model these “valence” quarks were supplemented
by a “sea” of quark–antiquark pairs.

The combination of Bjorken’s and Feynman’s studies was a perfect explanation
of “scaling”, i.e. the dependence of νW2 on the quantity ω alone. If the quark-
partons were treated as real particles that had to be on-shell (that is, satisfied the
relation p2 = E2 − p2 = m2) both before and after being scattered by the virtual
photon, then p2

f = (pi + q)2 = (xP + q)2 ≈ 0 if the masses of the quarks and
the proton could be ignored, as seemed reasonable for very high energy collisions.
From this followed

Q2 = 2xP · q = 2xMν

This meant that the fraction x of the proton’s momentum carried by the struck
quark was simply the reciprocal of ω, the variable singled out in the experiment at
SLAC. If the probability of there being a quark with momentum fraction x did not
depend on the details of the event, scaling would follow, provided the scattering
could be viewed as the incoherent sum of the scattering by the individual partons.

The precise connection between the parton distributions and the structure
functions can be obtained by expressing the cross sections in terms of the Lorentz
invariant variables s = 2ME, x = Q2/2Mν and y = ν/E. It is traditional to
write MW1 = F1 and νW2 = F2. The dimensionless function F1 and F2, which
must not be confused with the form factors of elastic scattering, are thus nominally
functions of both x and Q2. Substitution into the formula defining W1 and W2

gives

dσ

dx dy
=

4πα2s

Q4

{

1

2
[1 + (1 − y)2]2xF1 + (1 − y)(F2 − 2xF1) −

M

2E
xyF2

}



This can be compared with the cross section for the scattering of an electron
by a pointlike Dirac particle of unit charge carrying a fraction x of the proton’s
momentum. The cross section, which can be derived from the cross section given
above for an electron on a pointlike Dirac particle, is

dσ

dy
=

4πα2xs

Q4

{

1

2
[1 + (1 − y)2] − M

2E
xy

}

By comparing the results, we deduce the values of F1 and F2:

F1 ≡MW1 =
1

2

[

4

9
u(x) +

1

9
d(x) +

4

9
u(x) +

1

9
d(x) + ...

]

F2 ≡ νW2 = x

[

4

9
u(x) +

1

9
d(x) +

4

9
u(x) +

1

9
d(x) + ...

]

where the factors 4/9 and 1/9 arise as the squares of the quark charges. The
connection F2 = 2xF1, known as the Callan-Gross relation, is a consequence of
taking the partons to be pointlike Dirac particles. The absence of Q2 dependence
in F1 and F2 is the manifestation of scaling. With this stunningly simple formula,
deep inelastic electron scattering becomes a powerful probe of the interior of the
proton.

The simple parton picture was expected by Feynman to apply to very high
energies. He reasoned that at high energies time dilation would cause the inter-
actions between the partons to appear less frequent so that it would be a good
approximation to ignore these interactions. Thus deep inelastic scattering could
be regarded as the incoherent sum of the interactions with the individual partons.

A few years after these developments, important advances were made in un-
derstanding the theory of quantum chromodynamics (QCD). In this theory the
interactions between quarks are the result of the exchange of vector particles called
gluons. In many ways the theory is analogous to ordinary electrodynamics.

QCD finds very different behavior for quarks and gluons at short and long
distances. Unlike the behavior of electric forces, the force between a quark and
an antiquark does not decrease as their separation increases, but approaches a
constant. Thus it takes an infinite amount of energy to separate them completely.
Conversely, at short-distances, the forces become weaker. It is the short distance
behavior that is probed in deep inelastic scattering, and thus QCD confirms Feyn-
man’s picture of noninteracting partons as the constituents of the proton.

Of course, the interactions between the quarks only decrease and do not dis-
appear at short distances. As a result, the “kindergarten” parton model described
above is only approximate. The quark and gluon distributions are weakly functions
of Q2 as well as x and scaling is only approximately satisfied.

This phenomenon can be understood by analogy with bremsstrahlung as de-
scribed in Chapter 2. When an electron scatters from an electromagnetic field, it
emits photons and the greater the scattering, the more bremsstrahlung there is.



When a quark scatters, it emits gluons and some of its momentum is given to the
gluons. As the momentum transfer is increased, the fraction of its momentum lost
to gluons increases. Thus a quark with momentum fraction x at some low value of
Q2 becomes a quark with momentum fraction x−x′ and a gluon with momentum
fraction x′ at some higher value of Q2. Thus for large values of x, u(x,Q2) falls
with increasing Q2. For low values of x, u(x,Q2) may increase because quarks
with higher x may feed down quarks to it.

The parton model makes analogous predictions for deep inelastic neutrino scat-
tering. Since the source of neutrino beams are the decays π → µν and K → µν,
νµ greatly dominate over νe (see Chapter 6). Thus in deep inelastic neutrino
scattering by nucleons, one observes

νµ + nucleon → µ− + hadrons

and

νµ + nucleon → µ+ + hadrons

Because parity is not conserved in weak interactions, there are more structure
functions for neutrino scattering than for electron scattering. Three structure
functions contribute in the limit in which the lepton masses are ignored. If we use
as variables x = Q2/2Mν and y = ν/E, the general forms are, in the context of
the V-A theory,

dσν

dx dy
=
G2
FME

π

[

(1 − y)F ν2 + y2xF ν1 + (y − y2/2)xF ν3

]

dσν

dx dy
=
G2
FME

π

[

(1 − y)F ν2 + y2xF ν1 − (y − y2/2)xF ν3

]

These forms are general (except that we have ignored the Cabibbo angle and
corrections of order M/E) and F ν

1 , F
ν
2 , and F ν3 are functions of Q2 and ν. In the

Bjorken limit (ν → ∞, Q2 → ∞, 2Mν/Q2 = x finite), the F ν ’s are nearly functions
of x only.

The scattering of a neutrino by a pointlike fermion is much like the electromag-
netic scattering of an electron by a pointlike fermion. In Chapter 6 we saw that
the weak interaction current of the leptons has the V-A form, 1

2γµ(1 − γ5). For
massless fermions, the quantity 1

2(1− γ5) projects out the left-handed piece of the
fermion, while 1

2 (1 + γ5) projects out the right-handed piece. Now the coupling of
the electromagnetic field to the fermion is governed by the current

u(p′)γµu(p)

If we consider an incident left-handed fermion we can write



u(p′)γµ
1

2
(1 − γ5)u(p) = u(p′)

1

2
(1 + γ5)γµu(p)

=

[

1

2
(1 − γ5)u(p

′)

]†

γ0γµu(p)

where, as usual the dagger indicates hermitian conjugation. We see that the final
fermion is also left-handed. Indeed, both vector and axial vector couplings have this
property: the helicity (i.e. the projection of the spin along the direction of motion)
of a massless fermion is unchanged by the interaction with an electromagnetic or
weak current. It follows that we can consider the scattering as the incoherent sum
of processes with specified helicities. We take as an example the electromagnetic
process e−µ− → e−µ−, ignoring the particle masses and using center of mass
variables:

dσ

dΩ
(e−Lµ

−
L → e−Lµ

−
L ) =

dσ

dΩ
(e−Rµ

−
R → e−Rµ

−
R) =

α2s

Q4

dσ

dΩ
(e−Lµ

−
R → e−Lµ

−
R) =

dσ

dΩ
(e−Rµ

−
L → e−Rµ

−
L ) =

α2s

Q4

(1 + cos θ)2

4

The presence of the factor (1 + cos θ)2 makes the last two cross sections vanish
in the backward direction where cos θ = −1. This follows from the conservation
of angular momentum. If the electron direction defines the z axis, the initial state
e−Lµ

−
R has Jz = −1 because the spins are antiparallel to the z axis and there is no

orbital angular momentum along the direction of motion. For the final state e−Rµ
−
L

the same argument yields Jz = +1 if the scattering is at 180◦. Thus the scattering
must vanish in this configuration.

The connection between the center of mass scattering angle and the invariant
variables used above is 1 + cos θ = 2(1 − y). The addition of the four separate
electromagnetic processes produces the characteristic 1 + (1 − y)2 behavior found
in the deep inelastic electron scattering formulas.

The analogous weak cross sections follow the same pattern, except that only the
left-handed parts of the fermions and the right-handed parts of the antifermions
participate in charged-current processes, thus

dσ

dΩ
(νµe

−
L → µ−Lνe) =

G2
F s

2π2

dσ

dΩ
(νµνe → µ−Le

+
R) =

G2
F s

2π2

(1 + cos θ)2

4

Using these simple formulas, we can determine the parton model values of the
structure functions. Considering the scattering of a neutrino from a proton, we
note that since the lepton loses charge (ν → µ−), the struck quark must gain



charge. Thus it is only scattering from d quarks or u quarks that contribute. In
this way we find for νµp→ µ−X and νµp→ µ+X

dσν

dx dy
=

2MEG2
F

π
x
[

d(x) + (1 − y)2u(x)
]

dσν

dx dy
=

2MEG2
F

π
x
[

d(x) + (1 − y)2u(x)
]

If the antiquarks, which are important only for rather small values of x, are ignored,
the cross section for neutrino scattering is expected to be independent of y, while
antineutrino scattering should vanish as y → 1. To the extent to which the quark
distributions are functions of x alone, the total cross section, σ, and the mean
value of the momentum transfer squared, Q2, are both proportional to E.

Comparing with the general formula for neutrino scattering, we deduce the
structure functions for neutrino scattering in the parton model:

F ν1 = d(x) + u(x)

F ν2 = 2x[d(x) + u(x)]

F ν3 = 2[d(x) − u(x)]

F ν1 = u(x) + d(x)

F ν2 = 2x[u(x) + d(x)]

F ν3 = 2[u(x) − d(x)]

If the target is an equal mixture of u and d quarks, as is nearly the case for
neutrino experiments, except with a hydrogen bubble chamber, each occurrence
of u or d gets replaced by the average of u and d. Writing q(x) = u(x) + d(x),
q(x) = u(x) + d(x) we have

dσν

dx dy
=

MEG2
F

π
x
[

q(x) + (1 − y)2q(x)
]

dσν

dx dy
=

MEG2
F

π
x
[

q(x) + (1 − y)2q(x)
]



Actually, we should include strange quarks as well. For energetic neutrino beams
we have the processes νµs → µ−c and νµs → µ+c. Here c is the charmed quark,
to be discussed at length in Chapter 9. Our treatment has also been simplified by
ignoring the Cabibbo angle.

The integrated cross sections are expressed in terms of Q ≡
∫

x dx q(x) andQ ≡
∫

x dx q(x), the momentum fractions carried by the quarks and the antiquarks.

dσν

dy
=
MEG2

F

π

[

Q+ (1 − y)2Q
]

σν =
MEG2

F

π

[

Q+
1

3
Q

]

dσν

dy
=
MEG2

F

π

[

Q+ (1 − y)2Q
]

σν =
MEG2

F

π

[

Q+
1

3
Q

]

Since we expect much more of the momentum in the proton to be carried by the
quarks than the antiquarks, we anticipate

σν

σν
≈ 1

3

Inserting the values of the constants, we find

σν

E
= 1.56

[

Q+
1

3
Q

]

10−38 cm2/GeV

The total cross sections were measured at CERN using a heavy liquid (freon)
bubble chamber, Gargamelle, which had been constructed at Orsay, near Paris
(Ref. 8.4). Separate neutrino and antineutrino beams were generated by the
CERN Proton Synchroton (PS). Outgoing muons were identified by their failure
to undergo hadronic interactions in the bubble chamber. The energy of the pro-
duced hadronic system was measured by adding the energy of the charged particles
measured in a 20 kG magnetic field, to the energy of the neutral pions observed
through conversion of photons in the heavy liquid. The neutrino flux was moni-
tored by measuring the muon flux associated with it.

While the Gargamelle data covered very low energies, Eν < 10 GeV, the ex-
pected linear behavior of the cross section on the neutrino energy was observed,
with the results σν/E = 0.74 ± 0.02 × 10−38cm2/GeV, σν/E = 0.28 ± 0.01 ×
10−38cm2/GeV. These results were in good accord with the expectations.

The Gargamelle results were severely limited by the low energy of the CERN
PS. Later studies were carried out at Fermilab by the Harvard, Penn, Wiscon-
sin, and Fermilab Collaboration (HPWF) and the Caltech, Columbia, Fermilab,
Rochester, and Rockefeller Collaboration (CCFRR) and at the CERN SPS by
the CERN, Dortmund, Heidelberg, and Saclay Collaboration (CDHS) and the
CERN, Hamburg, Amsterdam, Rome, and Moscow Collaboration (CHARM). Bub-
ble chamber studies have also been done with the 15-foot bubble chamber at Fer-
milab and the Big European Bubble Chamber (BEBC) at CERN. The counter



detectors have active target regions, calorimetry, and a muon spectrometer. These
experiments confirmed the linearity of the cross section as a function of the neu-
trino energy and also gave similar results for σ/E, about 0.67 × 10−38cm2/GeV
for neutrinos and 0.34 × 10−38cm2/GeV for antineutrinos.

The essence of the parton model is that the same quark distributions should
work for all processes. For an isoscalar target, the electromagnetic structure func-
tion is

F2 =
5

18
x(u+ d+ u+ d) +

1

9
x(s+ s)

If the contribution from strange quarks is neglected, this is just 5/18 times the
corresponding structure function for neutrinos on an isoscalar target. Neglecting
the strange quarks is a good approximation for x > 0.3, where the antiquarks as
well make a small contribution. The agreement between the electroproduction and
neutrinoproduction data is satisfactory as is shown in Figure 8.28.

More detailed studies with electron, muon, and neutrino beams have demon-
strated the Q2 dependence predicted by QCD - the deviation from the scaling
behavior of the “kindergarten” parton model. At high x, increasing Q2 reduces
the quark distribution because the quarks split into a quark and a gluon sharing
the initial momentum, as described above. At low x, the structure functions in-
crease as Q2 increases because the momentum of high x quarks is degraded by the
emission process. These features are seen in Figure 8.29 showing data for dσ/dy
from the CDHS and CHARM collaborations at CERN and the CCFRR collabo-
ration at Fermilab. The deviations from scaling provide indirect evidence for the
existence of gluons. Direct evidence awaited the development of high-energy e+e−

colliding beam machines.



Figure 8.28: A compilation of data from neutrino and muon scattering experiments. The
structure function F2 is essentially proportional to the sum of the quark and antiquark
distributions:F2(x) = x[q(x) + q(x)]. The structure function xF3 is similarly related to
the difference of the quark and anti-quark distributions: xF3(x) = x[q(x) − q(x)]. The
third combination shown is qν(x) = x[u(x) + d(x) + 2s(x)]. The data shown are from the
CDHS, CCFRR, EMC (European Muon Collaboration), and BFP (Berkeley, Fermilab,
Princeton) groups [Compilation taken from Review of Particle Properties, Phys. Lett.,
170B, 79 (1986)]. The normalizations of the data sets have been modified as indicated to
bring them into better agreement. A factor 18/5, the inverse of the average charge squared
of a light quark, is applied to the muon data to compare them with the neutrino data.



Figure 8.29: The structure functions F2 for deep inelastic neutrino scattering as measured
by the CDHS, CHARM and CCFRR collaborations. Scaling would require the structure
functions to be independent of Q2 at fixed x. The deviations seen from scaling are consis-
tent with the predictions of QCD. From F. Dydak in Proceedings of the 1983 International
Lepton/Photon Symposium, Cornell, 1983, p. 634.



EXERCISES

8.1 Verify the curves in Figure 5 of McAllister and Hofstadter.

8.2 What static charge distributions would produce the form factors
F (q2) = 1/(1 + q2/m2) and F (q2) = 1/(1 + q2/m2)2?

8.3 We can define cross sections in the lab frame for virtual photons with mo-
mentum q using polarization vectors εT and εL, where ε · q = 0. If q =
(ν, 0, 0,

√

ν2 +Q2), where Q2 = −q2, let

εT = (0, 1, 0, 0)

εL = (
√

ν2 +Q2, 0, 0, ν)/Q

so εT · εT = −1, εL · εL = 1. Then

σL
σT

=
εµLε

ν
LWµν

εµT ε
ν
TWµν

Show that
σL
σT

=
W2

W1

(

1 +
ν2

Q2

)

− 1

8.4 * The deep inelastic scattering process has an amplitude that can be repre-
sented as

M =
e2

q2
u(k′)γµu(k) < F |Jµ(0)|p >

Here q = k − k′ is the four-momentum transfer, and k and k ′ are the initial
and final lepton momenta, p is the initial nucleon momentum, and |F >
represents the final hadronic state. The cross section, summed over final
states and averaged over initial lepton spins, is

dσ =
(2π)4

4k · p
∑

F

δ4(k + p− k′ − pF )
d3k′

(2π)32E′

×
∏

i

d3p′i
(2π)32E′i

(

4πα

q2

)2
1
2Tr k′/ γµk/ γν < p|Jν(0)|F >< F |Jµ(0)|p >

where k/ = kµγ
µ and where we treat the lepton as massless. The p′i represent

final state momenta of the produced hadrons. We define

W µν =
1

2M
(2π)3

∑

F

∫

∏

i

d3p′i
(2π)32E′i

δ4(p+ q − pF )

× < p|Jµ(0)|F >< F |Jν(0)|p >



Current conservation requires that qµW
µν = qνW

µν = 0. The tensor W µν

must be constructed from the vectors p and q. Show that the most general
form for W µν may be written as

W µν =

(

−gµν +
qµqν

q2

)

W1 +

(

pµ − p · qqµ
q2

)(

pν − p · qqν
q2

)

W2/M
2

Show that
dσ

dE′dΩ′
=

4α2E′2

Q4

[

2W1 sin2 1
2θ +W2 cos2 1

2θ
]

where θ is the laboratory scattering angle of the lepton.

8.5 * If the sum defining Wµν in Exercise 8.2 is restricted to elastic scattering,
the Rosenbluth formula should be recovered. Demonstrate that this is so by
taking

< F |Jµ(0)|p >= u(p′)

[

F1γµ + iF2
κqνσµν

2M

]

u(p)
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