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The neutral kaon system

From the discovery of the K0
L to CP violation, 1956–1967

The development of the concept of strangeness created something of a puzzle:

What is the nature of the K0 and K
0
? They differ only in their strangeness, a

quantity not conserved by the weak interactions through which they decay. Thus,
for example, they both can decay into π+π− and π+π−π0. The explanation was
given by Gell-Mann and Pais before parity violation was discovered. We present
their proposal modified to incorporate parity violation, but assuming at first that
the combination, CP , of charge conjugation and parity inversion is a good sym-
metry of both the weak and strong interactions.

The K0 is an eigenstate of the strong interactions, as is the K
0
. They are

antiparticles of each other so they can be transformed into each other by charge
conjugation and thus have opposite strangeness. If there were no weak interactions,

the K0 and K
0

would be degenerate, that is, equal in mass. The weak interactions
break the degeneracy and make the neutral kaons unstable. The particles with
well-defined masses and lifetimes are the physical states, the eigenstates of the
total Hamiltonian, including both strong and weak interactions. These states are

linear combinations of K0 and K
0
, the strong interaction eigenstates.

Since the action of CP on a K0 produces a K
0

we can establish a phase
convention by

CP |K0〉 = −|K0〉

If CP is conserved, the physical eigenstates are the eigenstates of CP . These are
simply

|K0
1 〉 =

1√
2

[

|K0〉 − |K0〉
]

|K0
2 〉 =

1√
2

[

|K0〉 + |K0〉
]
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where K0
1 has CP = +1 and K0

2 has CP = −1. The decays K0→ π+π− and K
0→

π+π− are both allowed by the weak-interaction selection rules. The π+π− state
with angular momentum 0 necessarily has P = (−1)L = +1, C = (−1)L = +1
since both C and P interchange the two pions, which are in an s-wave, and thus
CP = +1. It follows that the K0

2 cannot decay into π+π− if CP is conserved.
On the other hand, a π+π−π0 state that is entirely s-wave must have CP = −1
because the π+π− part has CP = +1 by the above reasoning, while the remaining
π0 has CP = −1. Since the important decay channel ππ is closed to it, the K 0

2

has a longer lifetime than the K0
1 .

Because K0 and K
0

are the strong interaction eigenstates, in hadronic colli-
sions it is these that are directly produced. According to Gell-Mann and Pais,
a produced K0 is to be regarded as a superposition of a CP–even K 0

1 and an
CP–odd K0

2 . The K0
1 portion of the state decays much more rapidly that the K 0

2

portion, so that after a period of time only the latter is present if the particle has

not yet decayed. While decays into ππ or πππ are possible from either K 0 or K
0
,

by the ∆S = ∆Q rule, a decay to e+νπ− is possible only from K0, while a decay

to e−νπ+ must come from K
0
.

The K0
2 was observed in 1956 by Lande et al. using a 3-GeV beam from the

Brookhaven Cosmotron (Ref. 7.1). A cloud chamber filled 90% with helium
and 10% with argon was placed 6 m from the interaction point. All K 0

1 s and Λs
would have decayed by the time of their arrival at the cloud chamber. In the cloud
chamber, forked tracks were observed that were kinematically unlike θ0 →π+π−.
It was concluded that they represented π±e∓ν, possibly π±µ∓ν, and occasionally
π+π−π0. The lifetime was judged to be in the range 10−9 s < τ < 10−6 s, whereas
the short-lived K0 (θ) had a lifetime around 10−10 s. Additional evidence for a
long-lived neutral K was obtained by W. F. Fry and co-workers using a K− beam
from the Bevatron with an emulsion target (Ref. 7.2).

These results were followed by a more complete report by Lande, Lederman,
and Chinowsky showing clearly the µπν, eπν, and 3π modes (Ref. 7.3). They ob-
tained further confirmation of the Gell-Mann–Pais prediction by noting a neutral
K that interacted with a helium nucleus to produce Σ−ppnπ+, a state with nega-
tive strangeness. The neutral K beam was overwhelmingly of positive strangeness
initially since the threshold for pn → pΛK0 is much lower than that for, say,

pn→ pnK0K
0
. Thus there was strong evidence for the transformation K 0→K

0
.

In vacuum, the time development of the K0
1 and K0

2 is

|K0
1 (τ)〉 = e−im1τ−γ1τ/2 1√

2

[

|K0(0)〉 − |K0
(0)〉

]

|K0
2 (τ)〉 = e−im2τ−γ2τ/2 1√

2

[

|K0(0)〉 + |K0
(0)〉

]

where m1,2 and γ1,2 are the masses and decay rates of the K0
1 and K0

2 . Here τ is
the proper time, τ = t(1− v2)1/2, t is the time measured in the laboratory, and as



usual the speed of light, c = 1. Because of virtual weak transitions between the

K0 and K
0
, the masses m1 and m2 differ slightly. If a state, |Ψ〉, that is purely

K0 is produced at τ = 0, it will oscillate between K 0 and K
0

with amplitudes

〈K0|Ψ(τ)〉 =
1

2
(e−im1τ−γ1τ/2 + e−im2τ−γ2τ/2)

〈K0|Ψ(τ)〉 =
1

2
(−e−im1τ−γ1τ/2 + e−im2τ−γ2τ/2)

These oscillations can be observed through semileptonic decays since, by the

∆S = ∆Q rule, the semileptonic decays are K0 → π−e+ν and K
0 → π+e−ν. An

example is shown in Figure 7.25. There the charge asymmetry in the decay of K 0

is shown as a function of the proper time. The ratio of “wrong sign” leptons (e−)
to “right sign” leptons (e+) from a state that is initially a K0, integrated over all
time, is

r =
(γ1 − γ2)

2 + 4(∆m)2

2(γ1 + γ2)2 − (γ1 − γ2)2 + 4(∆m)2

Since the decay rate of the K0
1 , γ1, is much greater than γ2, the K0

2 decay rate,
this ratio is nearly unity.

Even more dramatic predictions had been made for the neutral K system. Pais
and Piccioni in 1955 predicted that K0

2 s passing through matter would regenerate
a coherent K0

1 component. In matter, the time development is altered because

the K0 and K
0

interact differently with nucleons. For example, K
0
p → π+Λ is

allowed while K0p→ π+Λ is not. In fact, the elastic scattering amplitudes, f and

f , for K0p and K
0
p differ, just as those for K+p → K+p and K−p → K−p do.

Forward-moving neutral kaons accumulate extra phase from elastic scattering. As
in ordinary electromagnetic interactions, this scattering can be translated into an
index of refraction

n = 1 +
2πN

k2
f(0)

where N is the number density of scatterers, k is the wave number of the incident
particles, and f(0) is the (complex) elastic-scattering amplitude in the forward
direction, which is related to the total cross section by the optical theorem

σtot =
4π

k
Imf(0)

Since K0 and K
0

have different total cross sections, they have different (complex)
indices of refraction. In going a distance l, a particle picks up an extra phase
k(n−1)l. The distance l is related to the proper time interval by l = τv/(1−v2)1/2.

To incorporate this effect, we write first the Schrödinger equation for propa-
gation in free space. It is easy to guess what this is since we already have the



Figure 7.25: The charge asymmetry observed for K0 → π−e+ν and K
0 → π+e−ν as a

function of the proper time, starting from a predominantly K0 beam. The number of
observed positrons is N+ and the number of observed electrons is N−.The interference
effect seen is sensitive to the KL − KS mass difference. For large values of the proper
time, the nonzero asymmetry is a CP violating effect and determines Re ε [S. Gjesdal et
al., Phys. Lett. 52B, 113 (1974)]. This CP violating effect was first observed in Refs. 7.6
and 7.7.

solutions in the form of |K0
1 (τ)〉 and |K0

2 (τ)〉. If we let ψ be a column matrix

whose upper entry gives the K0 component and whose lower entry gives the K
0

component, then in terms of the proper time

i
∂ψ

∂τ
=











m− i
γ

2
δm− i

δγ

2

δm− i
δγ

2
m− i

γ

2











ψ

where m = (m2+m1)/2, γ = (γ2+γ1)/2, δm = (m2−m1)/2, and δγ = (γ2−γ1)/2.

We indicate the elastic K0-nucleus scattering amplitude by f and that for K
0

by
f . With the inclusion of the effects of the medium we have



i
∂ψ

∂τ
=















m− i
γ

2
− 2πNvf

k(1 − v2)1/2
δm− i

δγ

2

δm− i
δγ

2
m− i

γ

2
− 2πNvf

k(1 − v2)1/2















ψ

This is a slight modification of the Hamiltonian, so the eigenstates – the states
that propagate without turning into each other – are only slightly different from
the eigenstates in vacuum, that is, K0

1 and K0
2 . A bit of algebra reveals that these

states may be written

|K0′
1 〉 = |K0

1 〉 + r|K0
2 〉

|K0′
2 〉 = |K0

2 〉 − r|K0
1 〉

where the regeneration parameter, r (not to be confused with the mixing parameter
r that is nearly unity for kaons), is a small number, typically of order 10−3,

r =
−iπNv(f − f)

k(1 − v2)1/2γ1
[1/2 − i(m2 −m1)/γ1]

−1

The expression has been simplified by noting that since the K 0
1 decays much faster

than the K0
2 , γ1 >> γ2.

If a neutral kaon beam travels a long distance, only K 0
2 s are left. If the K0

2 s
traverse a medium, their propagation must be analyzed in terms of the eigenstates
in that medium. The K0

2 is mostly K0
2
′, but with a small component of K0

1
′.

These two pieces will acquire slightly different phases passing through the medium.
When they exit, the states must be reanalyzed in terms of K 0

1 and K0
2 . This will

reintroduce a component of K0
1 of order r. The result is that an amplitude for K 0

1

will be generated proportional to

r
[

1 − e(2iδm+δγ)L
]

where L = l(1−v2)1/2/v. We see then, that the amount of K0
1 regenerated depends

on the difference of the masses. It is thus possible to measure this difference which
turns out to be extremely small compared to any other nonzero mass splitting.

An early measurement of the mass difference was made by F. Muller et al. at the
Bevatron using regeneration techniques (Ref. 7.4). In addition to K 0

1 s produced
coherently in the forward direction, K0

1 s are produced away from the forward
direction through the ordinary scattering process K 0

2p → K0
1p. This “diffractive”

process produces particles mostly in the forward direction also, but not with such
pronounced forward peaking as the coherent regeneration. Through the reaction



π−p → K0Λ, Muller et al. generated a 670-MeV/c neutral kaon beam. A 30-
inch propane bubble chamber was placed downstream where the surviving beam
was purely K0

2 . The K0
1 produced by the K0

2 beam were detected by looking
for charged pion pairs that reconstructed to the proper mass. By measuring the
angular distribution of these K0

1 s it was possible to demonstrate the existence of
the coherently regenerated beam. A first measurement of the mass difference was
obtained:

(m2 −m1)/γ1 = 0.85
+0.3

−0.25

The current values are 1/γ1 = 0.8923 ± 0.0022 × 10−10 s and m2 −m1 = 0.5349 ±
0.0022 × 1010 s−1, giving (m2 −m1)/γ1 = 0.477.

After the fall of parity invariance, it appeared that the combination of charge
conjugation plus parity was still a good symmetry, as we assumed in the above
analysis. There were (and are) solid theoretical reasons for believing that the
combination of time reversal invariance, T , together with C and P gives a good
symmetry, CPT . Thus if CP is a good symmetry, so is T .

If CP is a good symmetry, K0
2 is strictly forbidden to decay into two pi-

ons. In 1964, Christenson, Cronin, Fitch, and Turlay observed the decay K 0
2→

π+π−(Ref. 7.5). Another supposed symmetry had fallen. The experiment, car-
ried out at the Alternating Gradient Synchrotron (AGS) at Brookhaven found that
the CP -violating decay had a branching ratio of about 2 × 10−3. Since most of
the prominent decays of the longer-lived neutral kaon (which we henceforth refer
to as K0

L) have two charged particles in the final state, just as in the decay being
sought, careful momentum measurements and particle identification were essential
to separating K0

L→π+π− from the background.
The apparatus was a two-armed spectrometer, each arm of which had a magnet

for momentum determination, scintillator for triggering on charged particles, a
Čerenkov counter for discriminating against e± simulating π±, and spark chambers
for tracking the charged particles. A small but convincing signal was obtained for
the CP violating decay. The experiment was soon repeated and confirmed at
several laboratories.

If CP is broken, the physical eigenstates are linear combinations of K 0
1 and

K0
2 . It turns out that as a result of CPT invariance only one (small) complex

parameter is required to express the states:

|K0
S〉 = |K0

1 〉 + ε|K0
2 〉

|K0
L〉 = |K0

2 〉 + ε|K0
1 〉

where the normalizations of the states are good to order ε.

With CP violation, the equation for free propagation is



i
∂ψ

∂τ
=











m− i
γ

2
δm− i

δγ

2

δm∗ − i
δγ∗

2
m− i

γ

2











ψ

where m and γ are still real, but δm and δγ are complex. The off-diagonal δm corresponds

to virtual K0-K
0
transitions while δγ is due to real transitions. Thus δγ is dominated by

the I = 0 ππ state. With the Wu–Yang convention explained below, this amplitude is real
and δγ is thus nearly real as well. The δm term can be written δm = δmR + iδmI with
δmI << δmR. From the definitions of K0

L and K0
S we then find

ε =
iδmI

mL −mS + iγS/2

This determines the phase of ε to be

arg(ε) = 90◦ − tan−1 γS

2(mL −mS)

≈ 44◦

Let us look at some of the details of the K0
L→ ππ decay. The 2π states can

be decomposed into I = 0 and I = 2 components, since an I = 1 ππ state cannot
have J = 0. If the final state pions did not interact with each other, CPT would

provide a simple relation between the K0 and K
0

amplitudes:

〈(2π)I = 0 stationary|Hwk|K0〉 = A0

〈(2π)I = 0 stationary|Hwk|K0〉 = −A∗0
〈(2π)I = 2 stationary|Hwk|K0〉 = A2

〈(2π)I = 2 stationary|Hwk|K0〉 = −A∗2

(Actually what we have written Hwk is really iHwk but this technicality will not
affect the results.) The actual final states are not the “stationary” states above, but
one in which the pions interact. Roughly speaking, because the pions are present
only in the final state, they acquire half the usual strong interaction phase. Thus
each amplitude is multiplied by exp(iδI), where I = 0 or 2 is the isospin. When
these results are assembled, the various K0 → ππ amplitudes turn out to be

〈π+π−|Hwk|K0
L〉 =

√

2/3eiδ2(εReA2 + iImA2) + 2
√

1/3eiδ0(εReA0 + iImA0)

〈π0π0|Hwk|K0
L〉 = 2

√

1/3eiδ2(εReA2 + iImA2) −
√

2/3eiδ0(εReA0 + iImA0)



〈π+π−|Hwk|K0
S〉 =

√

2/3(eiδ2ReA2 +
√

2eiδ0ReA0)

〈π0π0|Hwk|K0
S〉 =

√

2/3(
√

2eiδ2ReA2 − eiδ0ReA0)

These results can be simplified by observing the following. First, the much
faster decay of the K0

S compared to K+ → π+π0 shows that |A0| >> |A2|. This
is known as the ∆I = 1/2 rule since the ∆I = 3/2 interaction responsible for
K+ → π+π0 is weaker than the ∆I = 1/2 operator responsible for K 0

S → π+π−.
Secondly, the phase of the K0 state is still a matter of convention. It can be chosen
so that A0 is real. This is the convention of T. T. Wu and C. N. Yang. Thus
we can drop the ImA0 terms, and terms of order εA2/A0. To compare the CP
violating K0

L→ 2π decay amplitudes to the CP -nonviolating K 0
S→ 2π amplitudes

we define the ratios

η+− =
〈π+π−|Hwk|K0

L〉
〈π+π−|Hwk|K0

S〉
= ε+ ε′

η00 =
〈π0π0|Hwk|K0

L〉
〈π0π0|Hwk|K0

S〉
= ε− 2ε′

where

ε′ =
1√
2

ImA2

A0
exp(iπ/2 − iδ0 + iδ2)

With the Wu-Yang phase convention, ε measures the CP violation in the kaon
states themselves, while ε′ measures the CP violation in the decay. The measure-
ment of the branching ratio B for K0

L→ π+π−, together with three more easily
obtained numbers, gives the magnitude of η+−:

|η+−|2 =
Γ(K0

L → π+π−)

Γ(K0
S → π+π−)

=
B(K0

L → π+π−)Γ(K0
L → all)

B(K0
S → π+π−)Γ(K0

S → all)
≈ (2.3 × 10−3)2

The analogous measurement for the decay into neutral pions is of course more
difficult, but has been made.

To measure the phases of η+− and η00 requires observing the interference be-
tween K0

L→ ππ and K0
S→ ππ. This can be accomplished using a K0

L beam and
regenerating a small amount of K0

S , or by using a K0 beam. In the latter case,
one first sees the quickly decaying K0

S component. At the end, one sees only the
CP violating K0

L decay (if care is taken to observe only the ππ final state!). In
between, there is an interval when the contributions from K 0

S and K0
L are compa-

rable, and the interference can be measured. In Fig. 7.26 data obtained using the
regenerator method are shown.



Figure 7.26: Data for KL,S → π+π− as a function of the proper time after a K0
L beam has

passed through a carbon regenerator. Curve A shows the detection efficiency as indicated
on the right-hand scale. Curve B shows data for all values of the K momentum. The solid
curve shows the shape expected in the absence of K0

L −K0
S interference. The interference

is apparent and can be used to determine φ+−. Curve C shows the data for a restricted
interval ofK momenta. The solid curve shows a fit including interference. [W. C. Carithers
et al., Phys. Rev. Lett. 34, 1244 (1975)]



CP violation has been observed in only one other class of decays besides K 0
L→

ππ, namely K0
L→ µπν and K0

L→ eπν. Aside from phase space considerations,
these decays should be similar. From the ∆S = ∆Q rule, one anticipates that the
allowed decays to πµν should be:

K0 → π−µ+ν

K
0 → π+µ−ν

It follows directly that

δ =
Γ(K0

L → π−µ+ν) − Γ(K0
L → π+µ−ν)

Γ(K0
L → π+µ−ν) + Γ(K0

L → π−µ+ν)
≈ 2Re ε

Unlike the K0
L→ ππ decay, the decay process here is allowed even without CP

violation. It is the small difference between two allowed rates that is due to CP
violation. Thus very high statistics are required. The result can be compared
to the measurement of the real part of ε obtained in the K 0

L→ ππ decays. An
early measurement of K → πeν was obtained by a group headed by Steinberger
(Ref. 7.6). The analogous process, K → πµν was measured by a team led by M.
Schwartz (Ref. 7.7). Data from a later experiment are shown in Fig. 7.25.

Because CP violation seems such a fundamental aspect of particle interactions,
enormous efforts have been expended to measure the parameters η+− and η00.
The values for the CP violation parameters cited in the 1988 Review of Particle
Properties are

|η+−| = (2.266 ± 0.018) × 10−3

φ+− = arg η+− = 44.6◦ ± 1.2◦

|η00| = (2.245 ± 0.019) × 10−3

φ00 = arg η00 = 54◦ ± 5◦

δ = (3.30 ± 0.12) × 10−3

The results indicate that η+− and η00 are very nearly equal, or, equivalently,
ε′ is nearly zero. This could be explained if all the CP violation were due to an
interaction that changed strangeness by two units. All the CP violation then is in
the K mass matrix and ε′ = 0. This is called the superweak model. The standard
model of electroweak interactions, discussed in Chapter 12, makes predictions that
are slightly different from the superweak model. It is thus possible to distinguish



between the two with very precise measurements of the CP violating parameters.
This can be accomplished by measuring |η00|2 and |η+−|2. Some uncertainties are
reduced by taking the ratio

|η00|2
|η+−|2

≈ 1 − 6Re
ε′

ε
≈ 1 − 6

ε′

ε

where ε′/ε is known to be nearly real because the phases of ε′ and ε are quite similar.
The most recent data from a major experiment at CERN (Ref. 7.8) indicate a
small, nonzero value, ε′/ε = 0.0033±0.0011, and thus support the standard model
rather than the superweak model.

EXERCISES

7.1 Derive the relation between the forward-scattering amplitude and the index
of refraction by considering a plane wave of matter or light incident on a
thin slab of material. Determine the shift in the phase of the wave passing
through the material.

7.2 Show that the decay φ(1020) → K0
SK

0
L is allowed but φ(1020) → K0

SK
0
S and

φ(1020) → K0
LK

0
L are forbidden.

7.3 Verify the expression for the eigenstates of the neutral K system in matter.
Estimate the size of the regeneration parameter in beryllium for a momen-
tum of 1100 MeV, the conditions of the original CP violation experiment.
Estimate f and f using the optical theorem and data for the K+p and K−p
total cross sections.

7.4 A beam of K0 is created at t = 0. Assuming CP conservation, what is the

intensity of K
0

in the beam as a function of the proper time? Plot the results
for |∆m|τ1 = 0, 1, 2,∞. See Camerini et al., Phys. Rev. 128, 362 (1962).

7.5 Consider a neutral kaon beam that is purely K 0 at t = 0. Show that the rate
of decay into π+π− as a function of the proper time, τ , is proportional to

e−γSτ + 2|η+−|e−(γS+γL)/τ/2 cos[φ+− − (mL −mS)τ ] + e−γLτ |η+−|2.
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