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The Resonances

A pattern evolves, 1952 – 1964

Most of the particles whose discoveries are described in the preceeding chapters
have lifetimes of 10−10 s or more. They travel a perceptible distance in a bubble
chamber or emulsion before decaying. The development of particle accelerators
and the measurement of scattering cross sections revealed new particles in the
form of resonances. The resonances corresponded to particles with extremely small
lifetimes as measured through the uncertainty relation ∆t∆E = h̄. The energy
uncertainty, ∆E, was reflected in the width of the resonance, usually 10 to 200
MeV, so the implied lifetimes were roughly h̄/100MeV ≈ 10−25s. As more and
more particles and resonances were found, patterns appeared. Ultimately these
patterns revealed a deeper level of particles, the quarks.

The first resonance in particle physics was discovered by H. Anderson, E. Fermi,
E. A. Long, and D. E. Nagle, working at the Chicago Cyclotron in 1952. (Ref.
5.1) They observed a striking difference between the π+p and π−p total cross
sections. The π−p cross section rose sharply from a few millibarns and came up to
a peak of about 60 mb for an incident pion kinetic energy of 180 MeV. The π+p
cross section behaved similarly except that for any given energy, its cross section
was about three times as large as that for π−p.

In two companion papers they investigated the three scattering processes:

(1) π+p→ π+p elastic π+ scattering

(2) π−p→ π0n charge exchange scattering

(3) π−p→ π−p elastic π− scattering

They found that of the three cross sections, (1) was largest and (3) was the
smallest. The data were very suggestive of the first half of a resonance shape. The
π+ cross section rose sharply but the data stopped at too low an energy to show
conclusively a resonance shape. K. A. Brueckner, who had heard of these results,
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suggested that a resonance in the πp system was being observed and noted that a
spin-3/2, isospin-3/2 πp resonance would give the three processes in the ratio 9:2:1,
compatible with the experimental result. Furthermore, the spin-3/2 state would
produce an angular distribution of the form 1 + 3 cos2 θ for each of the processes,
while a spin-1/2 state would give an isotropic distribution. The π+p state must
have total isospin I = 3/2 since it has Iz = 3/2. If the resonance were not in the
I = 3/2 channel, the π+p state would not participate. Fermi proceeded to show
that a phase shift analysis gave the J = 3/2, I = 3/2 resonance. C. N. Yang,
then a student of Fermi’s, showed, however, that the phase shift analysis had
ambiguities and that the resonant hypothesis was not unique. It took another two
years to settle fully the matter with many measurements and phase shift analyses.
Especially important was the careful work of J. Ashkin et al. at the Rochester
cyclotron which showed that there is indeed a resonance, what is now called the
∆(1232) (Ref. 5.2). A contemporary analysis of the J = 3/2, I = 3/2 pion–nucleon
channel is shown in Figure 5.15.

The canonical form for a resonance is associated with the names of G. Breit and E.
Wigner. A heuristic derivation of a resonance amplitude is obtained by recalling that for
s-wave potential scattering, the scattering amplitude is given by

f =
exp(2iδ) − 1

2ik

where δ is the phase shift and k is the center-of-mass momentum. For elastic scattering
the phase shift is real. If there is inelastic scattering δ has a positive imaginary part. For
the purely elastic case it follows that

Im(1/f) = −k

which is satisfied by

1/f = (r − i)k

where r is any real function of the energy. Clearly, the amplitude is biggest when r
vanishes. Suppose this occurs at an energy E0 and that r has only a linear dependence on
E, the total center-of-mass energy. Then we can introduce a constant Γ that determines
how rapidly r passes through zero:

f =
1

2k(E0 −E)/Γ − ik
=

1

k
· Γ/2

(E0 −E) − iΓ/2

The differential cross section is

dσ/dΩ = |f |2

and the total cross section is

σ = 4π|f |2 =
4π

k2

Γ2/4

(E −E0)2 + Γ2/4



Figure 5.15: An analysis of the J = 3/2, I = 3/2 channel of pion–nucleon scattering.
Scattering data have been analyzed and fits made to the various angular momentum and
isospin channels. For each channel there is an amplitude, aIJ = (eiδIJ − 1)/2i, where δIJ

is real for elastic scattering and ImδIJ > 0 if there is inelasticity. Elastic scattering gives
an amplitude on the boundary of the Argand circle, with a resonance occurring when the
amplitude reaches the top of the circle. In the Figure, the elastic resonance at 1232 MeV
is visible, as well as two inelastic resonances. Tick marks indicate 50 MeV intervals. The
projections of the imaginary and real parts of the J = 3/2, I = 3/2 partial wave amplitude
are shown to the right and below the Argand circle [Results of R. E. Cutkosky as presented
in Review of Particle Properties, Phys. Lett. 170B, 1 (1986)].



The quantity Γ is called the the full width at half maximum or, more simply, the width.
This formula can be generalized to include spin for the resonance (J), the spin of two
incident particles (S1, S2), and multichannel effects. The total width receives contributions
from various channels, Γ =

∑

n Γn, where Γn is the partial decay rate into the final state
n. If the partial width for the incident channel is Γin and the partial width for the final
channel is Γout, the Breit-Wigner formula is

σ =
4π

k2

2J + 1

(2S1 + 1)(2S2 + 1)

ΓinΓout/4

(E −E0)2 + Γ2/4

In this formula, k is the center-of-mass momentum for the collision.

As higher pion energies became available at the Brookhaven Cosmotron, more
πp resonances (this time in the I = 1/2 channel and hence seen only in π−p) were
observed, as shown in Figure 5.16. Improved measurements of these resonances
came from photoproduction experiments, γN → πN , carried out at Caltech and
at Cornell (Ref. 5.4).

The full importance and wide-spread nature of resonances only became clear in
1960 when Luis Alvarez and a team that was to include A. Rosenfeld, F. Solmitz,
and L. Stevenson began their work with separated K− beams in hydrogen bubble
chambers exposed at the Bevatron. The first resonance observed (Ref. 5.5) was
the I = 1 Λπ resonance originally called the Y ∗1 , but now known as the Σ(1385).
The reaction studied in the Lawrence Radiation Laboratory’s 15-inch hydrogen
bubble chamber was K−p → Λπ+π− at 1.15 GeV/c. The tracks in the bubble
chamber pictures were measured on semiautomatic measuring machines and the
momenta were determined from the curvature and the known magnetic field. The
measurements were refined by requiring that the fitted values conserve momentum
and energy. The invariant masses of the pairs of particles,

M2
12 = (p1 + p2)

2 = (E1 +E2)
2 − (p1 + p2)2

were calculated. For three-particle final states a Dalitz plot was used, with either
the center-of-mass frame kinetic energies, or equivalently, two invariant masses
squared, as variables. As for the τ -meson decay originally studied by Dalitz, in the
absence of dynamical correlations, purely s-wave decays would lead to a uniform
distribution over the Dalitz plot. The most surprising result found by the Alvarez
group was a band of high event density at fixed invariant mass, indicating the
presence of a resonance.

The data showed resonance bands for both the Y ∗+ → Λπ+ and the Y ∗− →
Λπ− processes. Since the isospins for Λ and π are 0 and 1 respectively, the Y ∗ had
to be an isospin-1 resonance. The Alvarez group also tried to determine the spin
and parity of the Y ∗, but with only 141 events this was not possible.

This first result was followed rapidly by the observation of the first meson

resonance, the K∗(890), observed in the reaction K−p→ K
0
π−p, measured in the

same bubble chamber exposure (Ref. 5.6). This result was based on 48 identified



Figure 5.16: Data from the Brookhaven Cosmotron for π+p and π−p scattering. The cross
section peak present for π−p and absent for π+p demonstrates the existence of an I = 1/2
resonance (N∗) near 900 MeV kinetic energy (center of mass energy 1685 MeV). A peak
near 1350 MeV kinetic energy (center of mass energy 1925 MeV) is apparent in the π+p
channel, indicating an I = 3/2 resonance, as shown in Figure 5.15. Ultimately, several
resonances were found in this region. (Ref. 5.3)

events, of which 21 lay in the K∗ resonance peak. The data were adequate to
demonstrate the existence of the resonance, but provided only the limit J < 2
for the spin. The isospin was determined to be 1/2 on the basis of the decays
K∗− → K−π0 and K∗0 → K−π+.

A very important J = 1 resonance had been predicted first by Y. Nambu and
later by W. Frazer and J. Fulco. This ππ resonance, the ρ, was observed by A. R.
Erwin et al. using the 14-inch hydrogen bubble chamber of Adair and Leipuner
at the Cosmotron (Ref. 5.7). The reactions studied were π−p → π−π0p,
π−p → π−π+n, and π−p → π0π0n. Events were selected so that the momentum
transfer between the initial and final nucleons was small. For these events, there
was a clear peak in the ππ mass distribution. From the ratio of the rates for the
three processes, the I = 1 assignment was indicated, as required for a J = 1 ππ



resonance (J = 1 makes the spatial wave function odd, so bose statistics require
that the isospin wave function be odd, as well).

By requiring that the momentum transfer be small, events were selected that
corresponded to the “peripheral” interactions, that is, those where the closest
approach (classically) of the incident particles was largest. In these circumstances,
the uncertainty principle dictates the reaction be described by the virtual exchange
of the lightest particle available, in this instance, a pion. Thus the interaction
could be viewed as a collision of an incident pion with a virtual pion emitted by
the nucleon. The subsequent interaction was simply ππ scattering. This fruitful
method of analysis was developed by G. Chew and F. Low. For the Erwin et al.
experiment, the analysis showed that the ππ scattering near 770 MeV center-of-
mass energy was dominated by a spin-1 resonance.

Shortly after the discovery of the ρ, a second vector (spin-1) resonance was
found, this time in the I = 0 channel. B. Maglich, together with other mem-
bers of the Alvarez group, studied the reaction pp → π+π−π+π−π0 using a 1.61
GeV/c separated antiproton beam (Ref. 5.8). After scanning, measurement, and
kinematic fitting, distributions of the πππ masses were examined. A clean, very
narrow resonance was observed with a width Γ < 30 MeV. The peak occurred in
the π+π−π0 combination, but not in the combinations with total charges other
than 0. This established that the resonance had I = 0. A Dalitz plot analysis
showed that JP = 1− was preferred, but was not a unique solution. The re-
maining uncertainty was eliminated in a subsequent paper (Ref. 5.9). The Dalitz
plot proved an especially powerful tool in the analysis of resonance decays, espe-
cially of those into three pions. This was studied systematically by Zemach, who
determined where zeros should occur for various spins and isospins, as shown in
Figure 5.17.

The discovery of the meson resonances took place in “production” reactions.
The resonance was produced along with other final-state particles. The term
“formation” is used to describe processes in which the resonance is formed from
the two incident particles with nothing left over, as in the ∆ resonance formed in
πN collisions (N = p or n).

The term “resonance” is applied when the produced state decays strongly, as
in the ρ or K∗. States such as the Λ, which decay weakly, are termed particles.
The distinction is, however, somewhat artificial. Which states decay weakly and
which decay strongly is determined by the masses of the particles involved. The
ordering of particles by mass may not be fundamental. Geoffrey Chew proposed
the concept of “nuclear democracy”, that all particles and resonances were on an
equal footing. This view has survived and a resonance like K ∗ is regarded as no
less fundamental than the K itself, even though its lifetime is shorter by a factor
of 1014.

The proliferation of particles and resonances called for an organizing principle
more powerful than the Gell-Mann – Nishijima relation and one was found as a



Figure 5.17: Zemach’s result for the location of zeros in decays into three pions. The dark
spots and lines mark the location of zeros. C. Zemach, Phys. Rev. 133, B1201 (1964).

generalization of isospin. One way to picture isospin is to regard the proton and
neutron as fundamental objects. The pion can then be thought of as a combination
of a nucleon and an antinucleon, for example, np→ π+. This is called the Fermi-
Yang model. S. Sakata proposed to extend this by taking the n, p, and Λ as
fundamental. In this way the strange mesons could be accommodated: Λp→ K+.
The hyperons like Σ could also be represented: nΛp→ Σ+. Isospin, which can be
represented by the n and p, has the mathematical structure of SU(2). Sakata’s
symmetry, based on n, p, and Λ, is SU(3). Ultimately, Murray Gell-Mann and
independently, Yuval Ne’eman proposed a similar but much more successful model.

Each isospin or SU(3) multiplet must be made of particles sharing a common
value of spin and parity. Without knowing the spins and parities of the particles
it is impossible to group them into multiplets. Because the decays Λ → π−p and
Λ → π0n are weak and, as we shall learn in the next chapter, do not conserve
parity, it is necessary to fix the parity of the Λ by convention. This is done by
taking it to have P = +1 just like the nucleon. With this chosen, the parity of the
K is an experimental issue.



The work of M. Block et al. (Ref. 5.10) studying hyperfragments produced by
K− interactions in a helium bubble chamber showed the parity of the K− to be
negative. The process observed was K−He4 → π−He4

Λ. The He4
Λ hyperfragment

consists of ppnΛ bound together. It was assumed that the hyperfragment had
spin-zero and positive parity, as was subsequently confirmed. The reaction then
had only spin-zero particles and the parity of the K− had to be the same as that
of the π− since any parity due to orbital motion would have to be identical in the
initial and final states.

The parity of the Σ was determined by Tripp, Watson, and Ferro-Luzzi (Ref.
5.11) by studying K−p → Σπ at a center of mass energy of 1520 MeV. At this
energy there is an isosinglet resonance with JP = 3/2+. The angular distribution
of the produced particles showed that the parity of the Σ was positive. Thus
it could fit together with the nucleon and Λ in a single multiplet. The Ξ was
presumed to have the same JP .

In the Sakata model the baryons p, n, and Λ formed a 3 of SU(3), while the
pseudoscalars formed an octet. In the version of Gell-Mann and Ne’eman the
baryons were in an octet, not a triplet. The baryon octet included the isotriplet
Σ and the isodoublet Ξ in addition to the nucleons and the Λ. The basic entity of
the model of Gell-Mann and Ne’eman was the octet. All particles and resonances
were to belong either to octets, or to multiplets that could be made by combining
octets. The rule for combining isospin multiplets is the familiar law of addition
of angular momentum. For SU(3), the rule for combining two octets gives 1 +
8 + 8 + 10 + 10∗ + 27. (Here the 10 and 10∗ are two distinct ten-dimensional
representations.) The “eightfold way” postulated that only these multiplets would
occur. The baryon octet is displayed in Figure 5.18.

The pseudoscalar mesons known in 1962 were the π+, π0, π−, the K+, K0,

K
0
, and the K−. Thus, there was one more to be found according to SU(3). A.

Pevsner of Johns Hopkins University and M. Block of Northwestern University,
together with their co-workers found this particle, now called the η, by studying
bubble chamber film from Alvarez’s 72-inch bubble chamber filled with deuterium.
The exposure was made with a π+ beam of 1.23 GeV/c at the Bevatron (Ref.
5.12). The particle was found in the π+π−π0 channel at a mass of 546 MeV.
No charged partner was found, in accordance with the SU(3) prediction that the
new particle would be an isosinglet. The full pseudoscalar octet is displayed in
Figure 5.19 in the conventional fashion.

The η was established irrefutably as a pseudoscalar by M. Chrétien et al. (Ref.
5.13) who studied π−p → ηn at 1.72 GeV using a heavy liquid bubble chamber.
The heavy liquid improved the detection of photons by increasing the probability
of conversion. This enabled the group to identify the two photon decay of the
η. See Figure 5.20. By Yang’s theorem, this excluded spin-one as a possibility.
The absence of the two pion decay mode excluded the the natural spin-parity
sequence 0+, 1−, 2+,.. . If the possibility of spin two or higher is discounted, only
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Figure 5.18: The baryon JP = 1/2+ octet containing the proton and the neutron. The hor-
izontal direction measures Iz , the third component of isospin. The vertical axis measures
the hypercharge, Y = B + S, the sum of baryon number and strangeness.

0− remains.

Surprisingly the decay of the η into three pions is an electromagnetic decay.
The η has three prominent decay modes : π+π−π0, π0π0π0, and γγ. The last is
surely electromagnetic, and since it is comparable in rate to the others, they cannot
be strong decays. The absence of a strong decay is most easily understood in terms
of G-parity, a concept introduced by R. Jost and A. Pais, and independently, by
L. Michel.

G-parity is defined to be the product of charge conjugation, C, with the ro-
tation in isospin space e−iπIy . Since the strong interactions respect both charge
conjugation and isospin invariance, G-parity is conserved in strong interactions.
The nonstrange mesons are eigenstates of G-parity and for the neutral members
like ρ0 (I = 1, C = +1), ω0 (I = 0, C = −1), η0 (I = 0, C = +1), and π0

(I = 1, C = +1), the G-parity is simply C(−1)I . All members of the multiplet
have the same G-parity even though the charged particles are not eigenstates of
C. Thus the pions all have G = −1. The ρ has even G-parity and decays into an
even number of pions. The ω has odd G-parity and decays into an odd number of
pions.

The η has G = +1 and cannot decay strongly into an odd number of pions. On
the other hand, it cannot decay strongly into two pions since the J = 0 state of two
pions must have even parity, while the η is pseudoscalar. Thus the strong decay



π0, η π+π−

K0 K+

K− K
0

−1 0 1

1

0

−1

- Iz

6

Y

Figure 5.19: The pseudoscalar octet. The horizontal direction measures Iz while the
vertical measures the hypercharge, Y = B + S

of the η must be into four pions. Now this is at the edge of kinematic possibility
(if two of the pions are neutral), but to obtain JP = 0−, the pions must have
some orbital angular momentum. This is scarcely possible given the very small
momenta the pions would have in such a decay. As a result, the 3π decay, which
violates G-parity and thus must be electromagnetic, is a dominant mode.

The SU(3) symmetry is not exact. Just as the small violations of isospin
symmetry lead the proton–neutron mass difference, the larger deviations from
SU(3) symmetry break the mass degeneracy among the particles in the meson
and baryon octets. By postulating a simple form for the symmetry breaking,
Gell-Mann and subsequently, S. Okubo were able to predict the mass relations

1

2
(mp +mΞ) =

1

4
(mΣ + 3mΛ)

m2
K =

1

4
(m2

π + 3m2
η)

The use of m for the baryons and m2 for the mesons relies on dynamical con-
siderations and does not follow from SU(3) alone. The relations are quite well
satisfied.

The baryon and pseudoscalar octets are composed of particles that are stable,
that is, decay weakly or electromagnetically, if at all. In addition, the resonances
were also found to fall into SU(3) multiplets in which each particle had the same



Figure 5.20: A histogram of the open-
ing angle between the two photons in
the decay η → γγ. The solid curve
is the theoretical expectation corre-
sponding the mass of the η (Ref. 5.13).

spin and parity. The vector meson multiplet consists of the ρ+, ρ0, ρ−,K∗+,K∗0,

K
∗0
,K∗−, and ω. The spin of the K∗(890) was determined in an experiment by W.

Chinowsky et al. (Ref. 5.14) who observed the production of a pair of resonances,
K+p → K∗∆. They found that J > 0 for the K∗, while Alston et al. found
J < 2. The result was JP = 1−. An independent method, due to M. Schwartz,
was applied by R. Armenteros et al. (Ref. 5.15) who reached the same conclusion.

An additional vector meson, φ, decaying predominantly into KK was discov-
ered by two groups, a UCLA team under H. Ticho (Ref. 5.16) and a Brookhaven-
Syracuse group, P. L. Connolly et al. (Ref. 5.17), the former using an exposure
of the 72-inch hydrogen bubble chamber to K− mesons at the Bevatron, the lat-
ter using the 20-inch hydrogen bubble chamber at the Cosmotron. The reactions
studied were

(1) K−p→ ΛK0K
0

(2) K−p→ ΛK+K−

A sharp peak very near the KK threshold was observed and it was demon-



strated that the spin of the resonance was odd, and most likely J = 1.

The analysis relies on the combination of charge conjugation and parity, CP . From

the decay φ→ K+K− we know that if the spin of the φ is J , then C = (−1)J , P = (−1)J ,

and so it has CP = +1. As discussed in Chapter 7, the neutral kaon system has very

special properties. The K0 and K
0

mix to produce a short-lived state, K0
S and a longer-

lived K0
L. These are very nearly eigenstates of CP with CP (K0

S) = +1, CP (K0
L) = −1.

M. Goldhaber, T. D. Lee, and C. N. Yang. noted that a state of angular momentum J

composed of a K0
S and a K0

L thus has CP = −(−1)J . Thus the observation of the K0
SK

0
L

in the decay of the CP even φ would show the spin to be odd. Conversely, the observation

of K0
LK

0
L or K0

SK
0
S would, because of Bose statistics, show the state to have even angular

momentum. The long-lived K is hard to observe because it exits from the bubble chamber

before decaying. Thus when the experiment of Connolly et al. observed 23 ΛK0
S, but no

events ΛK0
SK

0
S, it was concluded that the spin was odd, and probably J = 1.

With the addition of the φ there were nine vector mesons. This filled an
octet multiplet and a singlet (a one-member multiplet). The isosinglet members
of these two multiplets have the same quantum numbers, except for their SU(3)
designation. Since SU(3) is an approximate rather than an exact symmetry, these
states can mix, that is, neither the ω nor the φ is completely singlet or completely
octet. The same situation arises for the pseudoscalars, where there is in addition
an η′ meson, which mixes with the η.

The octet of spin-1/2 baryons including the nucleons consisted of the p, n,Λ,
Σ+, Σ0, Σ−, Ξ0, Ξ−. This multiplet was complete. The ∆ had spin 3/2 and could
not be part of this multiplet. An additional spin-3/2 baryon resonance was known,
the Y ∗(1385) or Σ(1385). Furthermore, another baryon resonance was found by
the UCLA group (Ref. 5.18) and the Brookhaven–Syracuse collaboration (Ref.
5.19) that discovered the φ. They observed the reactions

K−p→ Ξ−π0K+

K−p→ Ξ−π+K0

and found a resonance in the Ξπ system with a mass of about 1530 MeV. Its
isospin must be 3/2 or 1/2. If it is the former, the first reaction should be twice
as common as the first, while experiment found the second dominated. The spin
and parity were subsequently determined to be JP = (3/2)+.

The JP = (3/2)+ baryon multiplet thus contained 4∆s, 3Σ∗s, and 2Ξ∗s. The
situation came to a head at the 1962 Rochester Conference. According to the rules
of the eightfold way, this multiplet could only be a 10 or a 27. The 27 would involve
baryons of positive strangeness. None had been found. Gell-Mann, in a comment
from the floor, declared the multiplet was a 10 and that the tenth member had
to be an S = −3, I = 0, JP = (3/2)+ state with a mass of about 1680 MeV.
It was possible to predict the mass from the pattern of the masses of the known
members of the multiplet. For the 10, it turns out that there should be equal



spacing between the multiplets. From the known differences 1385 − 1232 = 153,
1530 − 1385 = 145, the mass was predicted to be near 1680. The startling aspect
of the prediction was that the particle would decay weakly, not strongly since the

lightest S = −3 state otherwise available is ΛK
0
K− with a mass of more than

2100 MeV. Thus the new state would be a particle, not a resonance. The same
conclusion had been reached independently by Y. Ne’eman, who was also in the
audience.

Bubble chamber physicists came home from the conference and started looking
for the Ω−, as it was called. Two years later, a group including Nick Samios and
Ralph Shutt working with the 80-inch hydrogen bubble chamber at Brookhaven
found one particle with precisely the predicted properties (Ref. 5.20). The decay
sequence they observed was

K−p→ Ω−K+K0

Ω− → Ξ0π−

Ξ0 → Λπ0

Λ → pπ−

The π0 was observed through the conversion of its photons. The complete J P =
3/2+ decuplet is shown in Figure 5.21.

This was a tremendous triumph for both theory and experiment. With the
establishment of SU(3) pseudoscalar and vector octets, a spin-1/2 baryon octet,
and finally a spin 3/2 baryon decuplet, the evidence for the eightfold way was
overwhelming. Other multiplets were discovered, the tensor meson J PC = 2++,
octet [ f2(1270), K2(1420), a2(1320), f

′
2(1525)], J

PC = 1++ and JPC = 1+−

meson octets, and numerous baryon octets and decuplets. The discoveries filled
the ever-growing editions of the Review of Particle Properties.

A clearer understanding of SU(3) emerged when Gell-Mann and independently,
G. Zweig proposed that hadrons were built from three basic constituents, “quarks”
in Gell-Mann’s nomenclature. Now called u (“up”), d (“down”), and s (“strange”),
these could explain the eightfold way. The mesons were composed of a quark
(generically, q) and an antiquark (q). The Sakata model was resurrected in a new
and elegant form. The SU(3) rules dictate that the nine combinations formed
from qq produce an octet and a singlet. This can be displayed graphically in
“weight diagrams,” where the horizontal distance is Iz, while the vertical distance
is
√

3Y/2 =
√

3(B+S)/2. The combinations qq, which make an octet and a singlet
of mesons, are represented as sums of vectors, one from q and one from q.
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Figure 5.21: The JP = 3/2+ decuplet completed by the discovery of the Ω−.
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In the qq diagram there are three states at the origin (uu, dd, ss) and one state
at each of the other points. The state (uu+ dd+ ss)/

√
3 is completely symmetric

and forms the singlet representation. The eight other states form an octet. For

the pseudoscalar mesons the octet is π+, π0, π−, K+, K0, K
0
, K−, η and the

singlet is η′. Actually, since SU(3) is not an exact symmetry, it turns out that
there is some mixing of the η and η′, as mentioned earlier.

Baryons are produced from three quarks. The SU(3) multiplication rules give
3×3×3 = 10+8+8+1, so only decuplets, octets, and singlets are expected. The
JP = (3/2)+ decuplet shown in Figure 5.21 contains states like ∆++ = uuu and
Ω− = sss. The JP = (1/2)+ octet contains the proton (uud), the neutron (udd),
etc. There are baryons that are primarily SU(3) singlets, like the Λ(1405), which
has JP = (1/2)−, and the Λ(1520), with JP = (3/2)−.

The simplicity and elegance of the quark description of the fundamental parti-
cles was most impressive. Still, the quarks seemed even to their enthusiasts more
shorthand notation than dynamical objects. After all, no one had observed a
quark. Indeed, no convincing evidence was found for the existence of free quarks
during the 20 years following their introduction by Gell-Mann and Zweig. Their
later acceptance as the physical building blocks of hadrons came as the result of a
great variety of experiments described in Chapters 8 – 11.

EXERCISES

5.1 Predict the value of the π+p cross section at the peak of the ∆(1232) reso-
nance and compare with the data.

5.2 Show that for an I = 3/2 resonance the differential cross sections for π+p→
π+p, π−p → π0n, and π−p → π−p are in the ratio 9:2:1. Show that the
∆(1232) produced in πp scattering yields a 1 + 3 cos2 θ angular distribution
in the center-of-mass frame.



5.3 For the ∆++(1232) and the Y ∗+(1385), make Argand plots of the elastic
amplitudes for π+p → π+p and π+Λ → π+Λ using the resonance energies
and widths given in Table II of Alston, et al. (Ref. 5.5).

5.4 Verify the ratios expected for I(ππ) = 0, 1, 2 in Table I of Erwin, et al., (Ref.
5.7).

5.5 Verify that isospin invariance precludes the decay ω → 3π0.

5.6 What is the width of the η? How is it measured? Check the Review of
Particle Properties.

5.7 Verify the estimate of Connolly, et al. (Ref. 5.17) that if J(φ) = 1, then

BR(φ→ K0
SK

0
L)

BR(φ→ K0
SK

0
L) +BR(φ→ K+K−)

= 0.39

5.8 How was the parity of the Σ determined? See (Ref. 5.11).
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extensive coverage of the material covered in this chapter. See especially
Chapters 14 – 20.

D. H. Perkins, Introduction to High Energy Physics, Addison–Wesley, Menlo Park,
Calif., 1987, provides a very accessible treatment of related topics in Chapters
4 and 5.

REFERENCES

5.1 H. L. Anderson, E. Fermi, E. A. Long, and D. E. Nagle, “Total Cross Sections
of Positive Pions in Hydrogen.” Phys. Rev., 85, 936 (1952). and ibid. p.
934.

5.2 J. Ashkin et al., “ Pion Proton Scattering at 150 and 170 MeV.” Phys. Rev.,
101, 1149 (1956).

5.3 R. Cool, O. Piccioni, and D. Clark, “Pion-Proton Total Cross Sections from
0.45 to 1.9 BeV.” Phys. Rev., 103, 1082 (1956).



5.4 H. Heinberg et al., “Photoproduction of π+ Mesons from Hydrogen in the
Region 350 - 900 MeV.” Phys. Rev., 110, 1211 (1958). Also F. P. Dixon
and R. L. Walker, “Photoproduction of Single Positive Pions from Hydrogen
in the 500 – 1000 MeV Region.” Phys. Rev. Lett., 1, 142 (1958).

5.5 M. Alston et al., “Resonance in the Λπ System.” Phys. Rev. Lett., 5, 520
(1960).

5.6 M. Alston et al., “Resonance in the Kπ System.” Phys. Rev. Lett., 6, 300
(1961).

5.7 A. R. Erwin, R. March, W. D. Walker, and E. West, “Evidence for a π − π
Resonance in the I = 1, J = 1 State.” Phys. Rev. Lett., 6, 628 (1961).
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